本文设计的镜像页请求中镜像页大小为640字节,每次传输镜像块大小为64字节,即节点发送1次页请求可以得到10次块响应。当更新1个节点时,使用镜像页请求可以把原来的1 765条请求命令和1 765条确认帧减少9/10,共减少3 177条传输帧。减少的传输帧数量随着节点数目成比例增长。
对比表1与表2,可以发现无论节点数目为多少,页请求的平均每个节点的更新传输时间都比块请求的要短。其中,发送镜像页请求时间为15.5 ms,请求确认帧时间为1.92 ms,节点为1时,共减少时间为(15.5+1.92)×1765×0.9=27 672 ms,此值与表1和表2的测量值207.2-179.6=27.6 s基本符合。
4.2.2 实验二
为了测试镜像页请求在点对点更新情况下的最高效率,设定最短的响应间隔为10 ms,分别测量不同镜像页大小的单个节点更新传输时间。使用CC2531(支持USB)作为OTA服务器,能够缩短服务器向应用控制台索取镜像块数据的时间,进一步加快更新传输效率。镜像大小统一为113 KB,OTA_MAX_MTU大小为64字节,节点与OTA服务器间隔均为5 m。不同镜像页大小下的传输时间如表3所列。
实验二中,由于采用了支持USB的CC2531,能够把OTA服务器返回的镜像块响应所需时间缩短为22.5ms,节点发送镜像页请求所需时间保持为15.5 ms不变,来回确认帧时间为5.76 ms。当镜像页大小为64字节时,传输所需时间为(22.5+15.5+5.76)×1765=77 236ms,也与表3中的测量值77.2 s基本相符。当镜像页大小为6 400字节时,即请求命令减少到原来的1/100,时间缩短了50 s,更新效率大幅度提高,基本达到了单个节点更新速度的极限。
结语
通过无线更新固件,免去了回收更新节点所需时间,可以达到更新完成后不破坏当前网络拓扑结构的效果。另外,在Z-Stack协议栈设计了一种镜像页请求更新方式,实验结果表明,当批量更新整个网络时,既可以提高节点的更新效率,又可以大大减小网络的更新流量,并节省节点的功耗。当进行点对点更新时,如果把响应间隔缩减为10 ms,并把镜像页设置得足够大,单个节点的更新时间可以缩减为27.3 s,接近单个节点更新速度的极限。至于使用批量的更新方式还是点对点的更新方式,视具体的应用场合而定。
本文关键字:技术 综合通信技术,通信技术 - 综合通信技术