} NFCE_STATE;
static inline void NF_Conf(u16 conf)
{
S3C2410_NAND * const nand = S3C2410_GetBase_NAND();
nand->NFCONF = conf;
}
static inline void NF_Cmd(u8 cmd)
{
S3C2410_NAND * const nand = S3C2410_GetBase_NAND();
nand->NFCMD = cmd;
}
static inline void NF_CmdW(u8 cmd)
{
NF_Cmd(cmd);
udelay(1);
}
static inline void NF_Addr(u8 addr)
{
S3C2410_NAND * const nand = S3C2410_GetBase_NAND();
nand->NFADDR = addr;
}
static inline void NF_SetCE(NFCE_STATE s)
{
S3C2410_NAND * const nand = S3C2410_GetBase_NAND();
switch (s) {
case NFCE_LOW:
nand->NFCONF &= ~(1<<11);
break;
case NFCE_HIGH:
nand->NFCONF |= (1<<11);
break;
}
}
static inline void NF_WaitRB(void)
{
S3C2410_NAND * const nand = S3C2410_GetBase_NAND();
while (!(nand->NFSTAT & (1<<0)));
}
static inline void NF_Write(u8 data)
{
S3C2410_NAND * const nand = S3C2410_GetBase_NAND();
nand->NFDATA = data;
}
static inline u8 NF_Read(void)
{
S3C2410_NAND * const nand = S3C2410_GetBase_NAND();
return(nand->NFDATA);
}
static inline void NF_Init_ECC(void)
{
S3C2410_NAND * const nand = S3C2410_GetBase_NAND();
nand->NFCONF |= (1<<12);
}
static inline u32 NF_Read_ECC(void)
{
S3C2410_NAND * const nand = S3C2410_GetBase_NAND();
return(nand->NFECC);
}
#endif
再将include/configs/vcma.9中下面代码拷贝到include/configs/smdk2410.h中来。
/*-----------------------------------------------------------------------
* NAND flash settings
*/
#if (CONFIG_COMMANDS & CFG_CMD_NAND)
#define CFG_MAX_NAND_DEVICE 1 /* Max number of NAND devices */
#define SECTORSIZE 512
#define ADDR_COLUMN 1
#define ADDR_PAGE 2
#define ADDR_COLUMN_PAGE 3
#define NAND_ChipID_UNKNOWN 0x00
#define NAND_MAX_FLOORS 1
#define NAND_MAX_CHIPS 1
#define NAND_WAIT_READY(nand) NF_WaitRB()
#define NAND_DISABLE_CE(nand) NF_SetCE(NFCE_HIGH)
#define NAND_ENABLE_CE(nand) NF_SetCE(NFCE_LOW)
#define WRITE_NAND_COMMAND(d, adr) NF_Cmd(d)
#define WRITE_NAND_COMMANDW(d, adr) NF_CmdW(d)
#define WRITE_NAND_ADDRESS(d, adr) NF_Addr(d)
#define WRITE_NAND(d, adr) NF_Write(d)
#define READ_NAND(adr) NF_Read()
/* the following functions are NOP's because S3C24X0 handles this in hardware */
#define NAND_CTL_CLRALE(nandptr)
#define NAND_CTL_SETALE(nandptr)
#define NAND_CTL_CLRCLE(nandptr)
#define NAND_CTL_SETCLE(nandptr)
#define CONFIG_MTD_NAND_VERIFY_WRITE 1
#define CONFIG_MTD_NAND_ECC_JFFS2 1
#endif /* CONFIG_COMMANDS & CFG_CMD_NAND */
在include/configs/smdk2410.h中下面命令定义部分将CFG_CMD_NAND开关放开。
/***********************************************************
* Command definition
***********************************************************/
#define CONFIG_COMMANDS \
(CONFIG_CMD_DFL | \
CFG_CMD_CACHE | \
/*CFG_CMD_NAND |*/ \
/*CFG_CMD_EEPROM |*/ \
/*CFG_CMD_I2C |*/ \
/*CFG_CMD_USB |*/ \
CFG_CMD_REGINFO | \
CFG_CMD_DATE | \
CFG_CMD_ELF)
U-BOOT源代码目录结构介绍
board:和一些已有开发板有关的文件,比如Makefile和u-boot.lds等都和具体开发板的硬件和地址分配有关。
common:与体系结构无关的文件,实现各种命令的C文件。
cpu: CPU相关文件,其中的子目录都是以U-BOOT所支持的CPU为名,比如有子目录arm926ejs、mips、mpc8260和nios等,每个特定的子目录中都包括cpu.c和interrupt.c,start.S。其中cpu.c初始化CPU、设置指令Cache和数据Cache等; interrupt.c设置系统的各种中断和异常,比如快速中断、开关中断、时钟中断、软件中断、预取中止和未定义指令等;start.S是U-BOOT 启动时执行的第一个文件,它主要是设置系统堆栈和工作方式,为进入C程序奠定基础。
disk:disk驱动的分区处理代码。
doc:uboot移植的技术支持文档。
drivers:通用设备驱动程序,比如各种网卡、支持CFI的Flash、串口和USB总线等。
fs:支持文件系统的文件,U-BOOT现在支持cramfs、fat、fdos、jffs2和registerfs。
include:头文件,还有对各种硬件平台支持的汇编文件,系统的配置文件和对文件系统支持的文件。
net:与网络有关的代码,BOOTP协议、TFTP协议、RARP协议和NFS文件系统的实现。
lib_arm:与ARM体系结构相关的代码。
lib_generic:与体系结构无关的通用例程的代码。
tools:创建S-Record格式文件 和U-BOOT images的工具的源代码。
U-BOOT的特点
U-BOOT支持SCC/FEC以太网、OOTP/TFTP引导、IP和MAC的预置功能, 这方面可能和其它BootLoader(如BLOB、RedBoot、vivi等)类似。但U-BOOT还具有一些特有的功能。
◆ 在线读写Flash、DOC、IDE、IIC、EEROM、RTC,其它的BootLoader根本不支持IDE和DOC的在线读写。
◆ 支持串行口kermit和S-record下载代码,U-BOOT本身的工具可以把ELF32格式的可执行文件转换成为 S-record格式,直接从串口下载并执行。
◆ 识别二进制、ELF32、uImage格式的Image,对Linux引导有特别的支持。U-BOOT对Linux 内核进一步封装为uImage。封装如下:
#{CROSS_COMPILE}-objcopy -O binary -R.note -R.comment -S vmlinux \ linux.bin
#gzip -9 linux.bin
#tools/mkimage -A arm -O linux -T kernel -C gzip -a 0xc0008000 –e 0xc0008000 -n “Linux-2.4.20” -d linux.bin.gz /tftpboot/uImage
即在Linux内核镜像vmLinux前添加了一个0x40个字节的特殊头,这个头在include/image.h中定义,包括目标操作系统的种类(比如 Linux,VxWorks等)、目标CPU的体系机构(比如ARM、PowerPC等)、映像文件压缩类型(比如gzip、bzip2等)、加载地址、入口地址、映像名称和映像的生成时间。当系统引导时,U-BOOT会对这个文件头进行CRC校验,如果正确,才会跳到内核执行。如下所示:
ARMer9# bootm 0xc1000000
## Checking Image at 0xc100000 ...
Image Name: Linux-2.4.20
Created: 2004-07-02 22:10:11 UTC
Image Type: ARM Linux Kernel Image (gzip compressed)
Data Size: 550196 Bytes = 537 kB = 0.55MB
Load Address: 0xc0008000
Entry Point: 0xc0008000
Verifying Checksum ... OK
Uncompressing Kernel Image ……… OK
◆ 单任务软件运行环境。U-BOOT可以动态加载和运行独立的应用程序,这些独立的应用程序可以利用U-BOOT控制台的I/O函数、内存申请和中断服务等。这些应用程序还可以在没有操作系统的情况下运行,是测试硬件系统很好的工具。
◆ 监控(minitor)命令集:读写I/O,内存,寄存器、内存、外设测试功能等。
◆ 脚本语言支持(类似BASH脚本)。利用U-BOOT中的autoscr命令,可以在U-BOOT中运行“脚本”。首先在文本文件中输入需要执行的命令,然后用tools/mkimage封装,然后下载到开发板上,用autoscr执行就可以了。
① 编辑如下的脚本example.script。
echo
echo Network Configuration:
echo ----------------------
echo Target:
printenv ipaddr hostname
echo
echo Server:
printenv serverip rootpath
echo
② 用tools/mkimage对脚本进行封装。
# mkimage -A ARM -O linux -T script -C none -a 0 -e 0 -n "autoscr example script" -d example.script /tftpboot/example.img
Image Name: autoscr example script
Created: Wes Sep 8 01:15:02 2004
Image Type: ARM Linux Script (uncompressed)
Data Size: 157 Bytes = 0.15 kB = 0.00 MB
Load Address: 0x00000000
Entry Point: 0x00000000
Contents:
Image 0: 149 Bytes = 0 kB = 0 MB
③ 在U-BOOT中加载并执行这个脚本。
ARMer9# tftp 100000 /tftpboot/example.img
ARP broadcast 1
TFTP from server 10.0.0.2; our IP address is 10.0.0.99
Filename '/tftpboot/TQM860L/example.img'.
Load address: 0x100000
Loading: #
done
Bytes transferred = 221 (dd hex)
ARMer9# autoscr 100000
## Executing script at 00100000
Network Configuration:
----------------------
Target:
ipaddr=10.0.0.99
hostname=arm
Server:
本文关键字:开发 ARM单片机,单片机-工控设备 - ARM单片机