目前, 上位机获得可编程控制器的开入采样数据是通过通讯交换信息得到,而提高上位机和PLC 数据信息交换效率是解决数据采样的实时性的措施之一,但仅仅依靠提高上位机和PLC 数据交换速度是无法到达采样数据周期50ms 指标要求, 即使上位机使用以太网介质能达到此要求,也会占用上位机比较多资源。同时由于可编程控制器扫描工作方式的特点,通讯模块频繁和上位机数据交换会影响可编程控制器其他模块功能执行,如影响可编程控制器扫描周期。
对于可编程控制器来说,在其内部实现50ms 采样周期的数据采样是完全可以的实现的,充分利用可编程控制器中数据转存和逻辑控制功能, 将每50ms 一次采样数据寄存到连续但不相同数据缓冲区。通过采样周期时间的整定,结合上位机和可编程控制器通讯协议的最大数据长度,上位机只需要在给定的时间内进行一次读取多次采样数据即可。上位机读取采样数据后,根据PLC 采样数据转存的原则和逻辑,将已接收到采样数据进行采样时序的还原即可。
4.3 可编程控制器顺序开出的实现
可编程控制器开出模块顺序开出主要是满足电力系统测控装置的遥信检测要求, 设计具体要求为: ①上位机下发一次命令,启动顺序开出,PLC 接受命令启动顺序开出逻辑回路,由可编程控制器本身完成开出模块开出接点顺序开出。②在顺序开出过程不允许同时出现两个开出同时接点接通状态。③顺序开出执行一次完毕即可停止开出。
设计基本思路: 在启动命令后, 启动维持一个扫描周期时间的定时T1 脉冲信号回路,同时启动另一个计时器T2(T2< T1)。在一个扫描周期脉冲到来时,由设定计数器和目标进行比较, 决定开出继电器序号, 开出执行并保持时间T2 后,计数器加一和执行复位判断程序, 等待下一个脉冲到来后执行上一过程直到全部执行完毕。
设计维持一个扫描周期时间的定时脉冲信号,定时的时间参数为两个开出之间的时间。一个周期定时脉冲梯形图如图1 所示。通过修改定时器类型和计时器参数,确保M100 能够在T1 的时间后产生一个能够维持一个扫描周期间的脉冲信号, 是一个通用的标准的定时脉冲信号程序。M103 为定时脉冲到来后宽度为T2 脉冲。
在定时脉冲到来时, 通过数据比较程序, 由计数器R500 当前值和特殊指定值比较进行逻辑判断,决定是否接通中间继电器,再由该中间继电器决定控制特定的开出,并在自保持回路中串联一个M103 中间继电器触点状态,以控制开出维持的时间。
通过以上控制逻辑的设计,实现启动顺序开出功能的实现, 并实现系统要求一次启动, 按照循序开出不重叠。
通过此逻辑的实现,可以简化上位机在进行遥信检测的控制逻辑, 充分利用可编程控制器开入开出二次编程功能,在不影响可编程控制器性能指标上,减少上位机和可编程控制器的控制命令的交换, 提高上位机遥信的检测效率。
5 结束语
在本系统设计中, 充分利用可编程控制器模块化的组合特点以及其独有开入开出二次逻辑编程的优点,保证系统设计功能的实现的同时, 减少系统主控制平台的在开入和开出功能检测资源开销, 并带来系统稳定性和可靠性。可编程控制器独有可编程的特点为其在工业领域的应用奠定坚实的基础,随着计算机技术的进一步的发展,特别可编程控制器的核心模块CPU 运算的速度得到提高,通过提高指令的执行速度和扩展其计算功能,可编程控制器在工业控制领域的应用会越来越广泛。
本文关键字:智能 其它PLC应用,plc技术 - plc应用 - 其它PLC应用