众所周知,伺服系统由伺服驱动装置和驱动元件组成,高性能的伺服系统还有检测装置,用来反馈实际的输出状态。
舒所长介绍,在交流伺服系统中,电动机的类型有永磁同步交流伺服电机(PMSM)和感应异步交流伺服电机(IM),其中永磁同步电机具备十分优良的低速性能,可以实现弱磁高速控制,具有调速范围宽广、动态特性和效率高的优点,已经发展成为伺服系统的主流之选。而异步伺服电机虽然结构坚固、价格低廉,但在特性与效率上与永磁同步电机存在差距,只在大功率场合得到重视。
随着交流伺服系统的应用范围逐渐拓宽,其性能的评价标准也得到广泛关注。舒所长将性能指标大致分为调速范围、定位精度、稳速精度、动态响应和运行稳定性等方面,同时他对这几个指标分别做了详细说明,他解释道:“低档的伺服系统调速范围在1:1000以上,一般的在1:5000~1:10000,高性能的可以达到1:100000以上;定位精度一般都要达到±1个脉冲,尤其是低速下的稳速精度。比如给定1rpm时,一般的在±0.1rpm以内,高性能的可以达到±0.01rpm以内;动态响应方面,通常衡量的指标是系统最高响应频率,即给定最高频率的正弦速度指令,系统输出速度波形的相位滞后不超过90度或者幅值不小于50%。进口三菱伺服电机MR-J3系列的响应频率高达900Hz,而国内主流产品的频率在200~500Hz;运行稳定性主要是指系统在电压波动、负载波动、电机参数变化、上位控制器输出特性变化、电磁干扰,以及其他特殊运行条件下,维持稳定运行并保证一定的性能指标的能力。这方面国产产品与世界先进产品相比差距较大。”
同时,舒所长从控制策略方面对伺服系统性能进行了进一步阐释,他介绍,基于电机稳态数学模型的电压频率控制方法和开环磁通轨迹控制方法都难以达到良好的伺服特性,目前普遍应用的是基于永磁电机动态解耦数学模型的矢量控制方法,这是现代伺服系统的核心控制方法。他强调说:“虽然人们为了进一步提高控制特性和稳定性,提出了反馈线性化控制、滑模变结构控制、自适应控制等理论,还有不依赖数学模型的模糊控制和神经元网络控制方法,但是大多在矢量控制的基础上附加应用这些控制方法。”