您当前的位置:五五电子网电子知识电工技术电工文摘ABB变频器在风力发电行业的应用 正文
ABB变频器在风力发电行业的应用

ABB变频器在风力发电行业的应用

点击数:7748 次   录入时间:03-04 12:00:56   整理:http://www.55dianzi.com   电工文摘

    如前所述,双馈风力发电系统的变频器由于接在发电机的转子侧,所以变频器容量可小于发电机的容量,仅为发电机的转差功率,因此,变频器容量的选择与风力发电机的调速范围密切相关。一般风力发电机的调速范围为额定转速的70%~130%,转差率为±30%,所以变频器的额定容量可选为发电机额定容量的1/3。表1为ACS800-67的选型表。
    假设发电机额定电压为690 V,额定功率为2 MW,额定转速为1 500 r/min,调速范围为±30%,即发电机转速工作范围为1 000 ~2 000 r/min,因此,变频器的功率可选为2 MW ×30%=0.6 MW,根据选型表可得转子侧变流器型号为ACS800-104-0770-7;而整流侧变流器由于控制的网侧功率因数为1,只流过有功电流,故容量相对较小,型号为ACS800-104-0580-7。
3.3 技术特点
ACS800-67具有以下技术特点。
1)长寿命设计变频器内部器件选型和系统配置均按照20年使用年限设计,特别是直流母线电容采用胶片电容替代原有的电解电容,寿命更长、耐低温特性良好。冷却风扇具有调速功能,可延长其使用寿命。
2)适用于恶劣的使用环境变频柜内和模块内部均内置加热器,且配置有温度和湿度传感器,对抗低温和高湿环境。所有线路板均带有防腐涂层,柜体防护等级为IP54,保证了变频器恶劣环境下的可靠工作。
3)高端配置、紧凑型设计变频器将输入LCL滤波器、输出滤波器DU/DT以及进线接触器和直流熔断器作为标准配置,通讯适配器和以太网适配器作为选装配置。紧凑型的设计理念使得其在同等功率的变频器中体积最小,适用于放在发电机舱内。
4)低电压穿越能力在电网发生严重故障期间,比如短路或瞬间掉电,可通过使用有源或无源Crowbar 硬件,提供对电网的支持,保证电机依然在网。
5)优良的可控性由于整流单元采用IGBT 可控整流,直流母线电压得到泵升,因此电机转子的电压可控制高达750 V,风机的速度范围更宽,转子的电流更低。发电机的功率因数可达到±0.9,甚至更高,这完全取决于电机设计,变频器对此不成为瓶颈。在转子电压接近于0 V 时,变频器也完全可控。可以在速度范围内的任何一点切入切出。即使在风机静止时,也可以通过整流单元发出无功功率对电网提供支持。
6)完善的保护功能具有多重保护功能,例如过流、接地、风机超速和失速等保护功能,提供对电机转子和变频器的完整保护。

4 应用案例
    上海南洋电机厂采用ACS800-67 变频器构建双馈风力发电机的实验平台,风力机采用直流电动机模拟,即双馈发电机转子靠直流电动机拖动。系统连接示意图如图7所示。技术数据如下。
1)发电机定子额定电压690 V,定子额定电流1500A,额定频率50 Hz,额定功率1 345kW,额定转速1 513 r/min,同步转速1 500 r/min,功率因数0.9,转子开路电压1990V,转子电流550A。
2)变频器型号ACS800-67-0480/0770-7,调速范围±30%。

4.1 同步运行
     双馈风力发电系统投入电网前首先要进行同步运行,即使发电机的定子电压在幅值、频率和相位上与电网电压达到一致。典型的同步运行步骤如下:
1)将发电机转子拖动到设定的正常工作范围内,即同步转速的70%~130%,启动变频器;
2)开关S1闭合,网侧变流器启动为转子侧变流器建立直流电压,开关S2仍然断开;
3)转子侧变流器测量电网电压Ugrid(开关S2的输入侧)和定子电压Us;
4)转子侧此时工作于同步模式,转子侧变流器通过磁化转子绕组,感应出与电网电压同步的定子电压;
5)当定子电压与电网电压同步后,开关S2闭合,同步运行过程完成。此后变频器切换到转矩控制模式,接受给定的转矩和无功功率指令,准备开始发电。
 图8为同步运行时记录的曲线图。图8(a)为发电机转子转速被直流电动机拖动到1 300 r/min(如曲线1所示)后,变频器投入运行。开关S1闭合后,网侧变流器启动建立直流母线电压(如曲线2 所示),当直流母线电压建立完成并稳定后,转子侧逆变器投入运行,为转子绕组提供三相励磁电流,产生旋转的磁场,并在定子绕组上感生电压(如曲线4 所示),当定子绕组上的感应电压与电网电压(如曲线3 所示)在幅值、频率和相位完全一致后,同步过程完成,可以随时闭合开关S2,将发电机并入电网。曲线5和6分别为同步过程中的定转子电流。
图8(b)所示为电网U 相电压与定子U 相电压在同步过程中的变化曲线。由图可知,当变频器投入运行后,定子U 相电压迅速建立,并与电网U 相电压在相位、幅值上完全一致,达到同步的要求。

4.2 发电运行
图9 为发电机处于超同步运行(转子转速为1 513 r/min),给定转矩为额定转矩的85%,无功功率给定为零时,电网线电压、相电流的波形图。理论分析可知,当发电机处于超同步运行状态,发电机的定子侧和转子侧应同时向电网输出电能,网侧相电流为定子与转子的电流之和。通常网侧变流器的无功功率给定设置为零,所以定子与转子电流的相位相同,都与电网电压反相。实际上,由图可知,电网相电压与定子电流相位相差180°,完全反相,发电机处于发电状态,向电网输出电能,功率因数为-1。

5 结语
    风力发电作为21 世纪全球最有发展潜力的新能源之一,必将受到越来越多的重视。由ABB 研制和生产的风力发电变频产品ACS800-67/77 代表了当今风电的两大主流方向,已经成功应用于世界各地,对风电技术的全球发展起到了积极的推动作用。

上一页  [1] [2] 


本文关键字:行业  ABB变频器  风力发电  电工文摘电工技术 - 电工文摘

上一篇:FTTH光缆发展