从表2和图4可以看到,无论是单相接地故障还是相间故障,傅氏算法估计的测量阻抗都是在CT发生轻微饱和时最容易引起超越。随着饱和程度的加深,最小测量阻抗的电阻分量和电抗分量都增大,超越的时间缩短,并且超越的程度也在减小,控制在5%以内,在发生严重饱和时相间故障就不存在超越问题了。
3.2CT饱和对加差分的全波傅氏算法的影响
加差分全波傅氏算法估计的测量阻抗暂态超越情况详见表3。
单相接地故障时,利用该算法得到的测量阻抗轨迹变化图见图5。
从图5(a)可以看到,单相接地故障时,在移动数据窗过程中测量阻抗会出现电抗分量突然变得很小的情况,产生这种跳变的原因是采用了差分的方法。由于电抗分量的跳变,使得测量阻抗超越的程度比较大,超过了20%,从而使测量阻抗有可能进入保护动作区。从仿真结果看,电抗跳变的情况一般是在CT饱和程度比较轻的时候,当饱和程度加重时,在数据窗的移动过程中测量到的最小阻抗的电抗分量不断增大,超越的可能性越来越小。在中度饱和时虽然仍有超越的可能,但是程度很轻,不超过5%。而当饱和严重时,电抗分量已经大于
本文关键字:互感器 电工文摘,电工技术 - 电工文摘