您当前的位置:五五电子网电子知识电工技术电工文摘三运放架构对仪表放大器的制约 正文
三运放架构对仪表放大器的制约

三运放架构对仪表放大器的制约

点击数:7408 次   录入时间:03-04 12:04:03   整理:http://www.55dianzi.com   电工文摘

图7. 间接电流反馈仪表放大器在第一级输出中不存在共模电压。
图7. 间接电流反馈仪表放大器在第一级输出中不存在共模电压。

考虑到输入共模电压的限制(例如,一个非满摆幅输入级),器件的传输特性如图8所示。黑色区域表示满量程输出电压对应的输入共模电压的限制范围。灰色区域给出了仪表放大器按照设想正常工作时的输入共模电压的范围—输出电压与放大后的输入差分电压成正比,同时抑制所有输入共模电压。

图8. 间接电流反馈仪表放大器可接受的输入共模电压范围如图中灰色和黑色部分所示,(a)和(b)中,黑色区域是灰色区域的子集,在这一区域中可得到满量程输出电压。
图8. 间接电流反馈仪表放大器可接受的输入共模电压范围如图中灰色和黑色部分所示,(a)和(b)中,黑色区域是灰色区域的子集,在这一区域中可得到满量程输出电压。

实验结果

下面的实验结果为关于间接电流反馈架构的讨论提供了有力支持。假设采用MAX4197和MAX4209H,二个仪表放大器的增益均为100。MAX4197是三运放结构,而MAX4209H是间接电流反馈仪表放大器。二者均采用VCC = 5V供电,并使用VREF = 2.5V提供器件的零输出偏置。

本实验中,采用两种信号波形输入到仪表放大器中。

例1是带有100Hz较大共模电压的1kHz差分信号,理想的仪表放大器输出不包含100Hz信号成分,只有1kHz的信号。信号波形可近似为:

VIN+ = 正弦波振幅 = 2VP-P,
偏置 = 1V,频率 = 100Hz

(VIN+ - VIN-) = 正弦波振幅 = 30mVP-P,
偏置 = 0,频率 = 1kHz

例2是带有1kHz较大共模电压的100Hz差分电压。理想的仪表放大器输出不包含1kHz信号成分,只有100Hz信号。输入信号波形可以近似为:

VIN+ = 正弦波振幅 = 2VP-P,
偏置 = 1V,频率 = 1kHz

(VIN+ - VIN-) = 正弦波振幅 = 30mVP-P,
偏置 = 0,频率 = 100Hz

实验结果如下,其中通道1为VIN+,通道2为VIN-,通道3为仪表放大器的输出。

例1实验结果

图9a中,MAX4209H得到了预期结果,MAX4197只有在输入共模电压远远高于地电位时才能得到预期结果(图9b)。在MAX4197的输出电压中带有明显的100Hz信号成分。

图9. 途中给出了例1采用的(a) MAX4209H间接电流反馈结构和(b) MAX4197三运放结构的测试结果。注意:由于在输入1和输入2迹线中,100Hz的VCM信号占优势,1kHz VDIFF太小而不可见。
图9. 途中给出了例1采用的(a) MAX4209H间接电流反馈结构和(b) MAX4197三运放结构的测试结果。注意:由于在输入1和输入2迹线中,100Hz的VCM信号占优势,1kHz VDIFF太小而不可见。

例2实验结果

MAX4209H给出了预期结果(图10a),MAX4197只有在共模电压远远高于地电位时才能放大输入差分信号(图10b)。当共模电压接近地电位时,输出电压为共模电压的反相信号或只是简单的共模缓冲信号,具体取决于A1和A2中的哪一个进入饱和状态(如上所述)。

图10. 图中给出了例2采用的(a) MAX4209H间接电流反馈结构和(b) MAX4197三运放结构的测试结果。注意(如图9),对于三运放结构的仪表放大器,输出1kHz的VCM信号远远超出预期值,而间接电流反馈结构仍然具有优异的性能。
图10. 图中给出了例2采用的(a) MAX4209H间接电流反馈结构和(b) MAX4197三运放结构的测试结果。注意(如图9),对于三运放结构的仪表放大器,输出1kHz的VCM信号远远超出预期值,而间接电流反馈结构仍然具有优异的性能。

结论

在当前这一高性能器件层出不穷年代,客户不仅要求更好的性能,而且也要求更加智能化的电源管理方案,以延长电池寿命,提高供电效率。双电源模拟设计已逐步过渡到单电源供电架构,这改变了电子产品的设计理念和使用方式。创新的设计架构,例如,本文讨论的间接电流反馈结构,将使昨天的梦想成为今天的现实。

上一页  [1] [2] 


本文关键字:放大器  仪表  电工文摘电工技术 - 电工文摘

《三运放架构对仪表放大器的制约》相关文章>>>