您当前的位置:五五电子网电子知识电工技术电工文摘遗传模糊算法在短期负荷预测中的应用 正文
遗传模糊算法在短期负荷预测中的应用

遗传模糊算法在短期负荷预测中的应用

点击数:7449 次   录入时间:03-04 12:00:14   整理:http://www.55dianzi.com   电工文摘
 
  其中α+β+γ=1,α≥β≥γ。该量代表过去3周同类型日同一时刻T的负荷的加权平均值。如果过去3周同类型日中的某一天正好是节日,则取再前一周的数据,并根据α、β、γ的调节确定近期与远期历史数据对当前的影响。这一输入中包含负荷的动态信息和近期的发展趋势,对于预测的准确性是至关重要的。
  其隶属函数的确定方式与输入量X2相似,但因该变量与预测负荷基本成线性关系,因此选取的隶属函数个数较少,选定三个模糊词,即T(A3)={NB(低),ZE(中),PB(高)}。
  同理,输出量Y分为4档,设定模糊词集T(B)={NB(负大),NS(负小),PS(正小) ,PB(正大)}。
2.2 推理规则的选取
   推理规则由一系列多维多重模糊条件语句组成,本文中输入量有三个,因此是三维多重模糊条件语句,其基本形式为“IFx1 is Ali and x2 is A2j and x3 is A3k THEN y=Bm”。其中i、j、k分别为各输入量的隶属函数个数,m为输出量隶属函数的个数。由此可知本文系统可能的规则数为7×3×5=105个,对105个模糊条件语句的确定实际上是对每一条语句选择合适的Bm。

3 遗传算法应用中的问题
  编码方式的优劣决定了遗传算法总体效果的优劣,它直接影响着遗传算法的搜索能力和保持种群稳定性。如果编码不适当,会使得不可行解过多,搜索可行解困难重重,往往需要加上大量的前期或后期补救措施才能够完成计算。因此,如何制定优良的编码策略是绝大部分遗传算法问题中的重要问题。对几种编码进行分析比较后,本系统选用二进制编码方式,每三位基因串表示隶属函数的一个参数;使用两位基因表示每条推理条件句的推理结果,然后将两个基因串连接起来,形成表征模糊逻辑系统的染色体。
  对于表示隶属函数的基因串部分,假设某一参数ai(或者bi)的取值范围是[Umin,Umax],用一l位数来表示,其关系表示如下: u=Umin+(n/(2t-1))(Umax-Umin)。本文中l=3。正如第二节中所述,该系统输入量X2有5个隶属函数,输入量X3共有3隶属函数,输出量Y为4个隶属函数,每个隶属函数的待定参数为两个,于是基因串共长72位,形如下式:

  从第73位开始至282位是对105条模糊条件语句的编码,每两位基因对应一条语句,例如如果X73X74若为“01”,则表示相应的模糊条件语句为“IF x1(日期类型)is A11(周一),and x2(T时刻气温)is A21(很低)and x3(近期负荷量趋势)is A31(底)then y(预测量)is B1 (很低)”。
  在确定的编码方式后,遗传算法对种群中的染色体进行各种遗传算子操作(选择、交叉和变异等),应当采用各种改进措施以提高算法的搜索效率,避免早熟收敛等问题。

4 负荷预测仿真分析
  为检测系统的可行性,针对所开发的系统进行计算机仿真。本文利用河南省某市2002和2003年夏季(4、5月份)负荷资料,对2003年5月份第三周星期一的日负荷进行模拟预测。
  首先将两年中4、5月份负荷资料和天气资料按照24个不同时刻分成24份,然后选择出可以作为训练样本的数据来。此处我们选择了40份有效历史数据,按照第2、3节所叙述的方法对系统参数进行训练。最后对选定日进行日模拟负荷预测。表1给出了实际值,预测值和误差的记录。


5 结束语
  电力系统短期负荷预测一项极为复杂的工作。由于负荷的变化要受到诸多因素的影响,而这种影响往往又难以用经典数学方法准确地加以描述,所以往往很难达到预期的预测效果。本文利用遗传算法对模糊系统中的隶属函数和推理规则进行训练,并将由该方法所确定的模糊逻辑预测系统应用于短期负荷预测。对影响负荷变化的因素进行研究,结合具体的问题,选取了适应于系统的输入量。在遗传编码方面,将确定隶属函数与推理规则的各种参数进行统一编码,以求得系统参数的最优组合。实验结果证明了该方法具有良好的预测性能,和较好的发展前景。

参考文献


[1]Yang Hong-Tzer, Huang Chao-Ming. A New Short-Term Load Forecasting Approach Using Self-Organizing Fuzzy ARMAX Models. IEEE PWRS,1998,13(1)
[2] 严 华,吴 捷,马志强,吴列鑫.模糊集理论在电力系统短期负荷预测中的应用[J].电力系统自动化.2000年6月:67~72
[3] 王天华,王平洋,范明天.遗传算法、模糊逻辑和运输模型在配电网空间负荷预测中的应用[J].电网技术. 1999,23(1):24~28
[4]Lambert G.. Fuzzy Knowledge Base for Load Forecasting. Intelligent Systems Applications to Power Systems (ISAP)' 91. 1991
[5]Ringwood J V, Commarmound T Q. Qualitative and Quantitative Fuzzy Modeling of a 24-Hour Electricity Consumption. In: EUFIT'97, ELITE Foundation 1997. Germany: 1997
[6] 郁滨, 张昊等.自适应模糊系统理论在负荷预测中的应用研究.控制与决策.1999,14(3):223~228
[7] 王宏伦, 吕庆风, 佟明安. 基于遗传算法的自学习模糊逻辑系统. 控制与决策. 2000,15(6):658-661

上一页  [1] [2] 


本文关键字:暂无联系方式电工文摘电工技术 - 电工文摘

《遗传模糊算法在短期负荷预测中的应用》相关文章>>>