您当前的位置:五五电子网电子知识电工技术电工文摘人工智能技术在电力系统故障诊断中应用 正文
人工智能技术在电力系统故障诊断中应用

人工智能技术在电力系统故障诊断中应用

点击数:7755 次   录入时间:03-04 11:52:16   整理:http://www.55dianzi.com   电工文摘
  用GA从优化的角度解决故障诊断问题,它能够在诊断信息不完整的情况下给出全局最优或局部最优的多个可能的诊断结果。但在诊断所依据的信息发生畸变,出现复杂的故障模式的时候,也难以保证诊断结果的可靠性。因此如何根据被诊断对象特征,建立能保证高容错性能故障诊断适应度函数,以及如何确定迭代操作结束的准则和保证最终的结果为最优解或近似最优解。这些问题是基于GA应用中需要深入研究的内容。

6 基于Petri网络的电力系统故障诊断[50~56]
  Petri网络(Petri net)是由德国数学家C.A.Petri于1960~1965年提出的一种通用的数学模型[50],是在构造有向图的组合模型的基础上,形成可用矩形运算所描述的严格定义的数学对象。Petri网分析方法既可用于静态的结构分析,又可用于动态的行为分析。它以研究系统的组织结构和动态行为为目标,能够对系统中同时发生,次序发生或循环发生的各种活动过程进行定性或者定量的分析。所以Petri网络是离散事件动态系统建模和分析的理想工具。
  电力系统故障属于一个离散事件的动态系统,由系统中各级电压、各类保护动作反映故障,并把切除故障的过程看作一系列事件活动的组成,而事件序列与相应实体联系在一起。动态事件主要包括实体活动(如断路器、继电保护、自动装置等)和信息流活动(如信号的传递,控制指令发送,各监测信号流等)。鉴于电力系统故障动态过程描述的可行性,可确定用Petri网去构造电力系统诊断模型。
    文献[51]以输电网络中的设备为单位,首先研究了故障“切除”过程的Petri网络模型,进而对故障诊断的Petri网络模型求解。整个系统的物理概念清晰,数学求解速度快适宜实时性诊断。文中还分析了保护、断路器不正确动作对Petri网络模型的影响,并分别给出了识别保护和断路器不正确动作的模块。对IEEE118节点系统的测试结果表明,Petri网络是一种比较有潜力的模型。但文中对保护多重性配置,时间差异,性能发生变化都未深入讨论,它也正是基于Petri网络原理存在的局限性。
  文献[52]文中提出嵌入冗余Petri网方法,它是在原考虑的故障类型Petri网的基础上加入错误伴随式矩阵C。其目的是要解决由于网络中事件序列和信息流不正常时(如保护或断路器的拒动等)的故障诊断。采用差错控制编码技术构造C矩阵,但它必须是在预先设想的前提下构造,而不能自动构造,并且构造复杂,工作量大。而在实际系统中,故障诊断所依据信息的畸变是不确定的,所以它的容错能力是有限的,该类问题与ES差不多。
  对大规模电网基于Petri网模型建模时,因设备增加和网络扩大会出现状态的组合爆炸,且基本的Petri网不能描述时间特征要求高的行为特征,因此在复杂系统建模时,需要采用高级的Petri网,如谓词/变迁网,有色时间网等。

7 基于Agent技术的电力系统故障诊断[89~95]
  人工智能技术研究的不断发展为故障诊断开辟新途径和新方法提供了可能性。分布式人工智能是在传统AI的基础上发展起来的,主要研究在逻辑上或物理上分散的智能系统如何并行的,或相互协作地进行问题的求解。它分为分布式问题求解和多Agent系统两个方向,多Agent系统被看作是AI的试验平台,当一个问题涉及多个物理或者从逻辑上能形成分解的问题求解实体,每个子问题求解实体仅仅拥有问题求解所需的有限数据、信息和资源,不同的子问题求解实体之间必须相互交互才能最终求解问题。多Agent系统中Agent的自治性以及Agent之间的合作、协同等特征为这类问题提供了一种自然的建模方式。基于多Agent技术的应用研究开始于上世纪80年代,近年来在工业、制造业、经济管理、航天业等领域得到了明显增长[53~54],成为AI的研究热点之一。
    基于多Agent技术也引起了电力系统研究者的关注[77~79],特别是在近2、3年来,人们尝试着将多Agent技术引入电力系统的故障诊断相关研究和应用中。文献[55]以Agent技术来实现故障恢复系统,系统由数个母线Agent单元和唯一的一个在整个决策过程中充当了管理角色的服务Agent,在服务Agent的协调下,母线Agent单元在故障状态下通过与其他的母线Agent单元相互作用、交换、通讯、合作形成多Agent诊断系统,得到局部最优目标;文献[56]建立了基于多Agent的DIAMOND系统,将数个监控系统和诊断系统集为一个综合的集散系统,简化了问题的处理过程和增加了系统的开放性。
  从Agent的特点上看,它区别于传统智能系统的显著特征在于它所具备的与其所处环境,与其它Agent进行交互,协调和协作的能力。AI的研究目标是认识和模拟人类智能行为,单个Agent主要用于模拟个人的智能行为,而多Agent系统则是以模拟人类社会群体智能行为作为最终目标,它通过多个Agent之间的交换或通讯、合作形成了一个多Agent系统。研究多Agent系统意义下的Agent,实际是将多个Agent单元的推理和知识结合起来,创建多智能系统,以完成对更复杂、更大规模的问题的解决起到重要的作用。

8 基于数据挖掘技术的电力系统故障诊断[57~61]
  数据库中的知识发现的核心技术——数据挖掘(data mining—DM)是近年来国际上较为活跃的研究领域,是人工智能与数据库技术相结合的产物。它应用一些专门算法从数据中抽取出有效的模式,从大量数据中发现潜在规律,提取有用知识。DM出发点是代替专家从大量的数据中挖掘出隐含于其中的知识,它使数据存储技术进入了一个更高级的阶段。即它不仅利用了数据库的存储功能,对过去的数据进行查询和遍历,能回答“什么”(What);还能够找出过去数据之间的潜在联系,挖掘出其背后隐藏着的许多重要信息(这些信息是关于数据的整体特征的描述及对发展趋势的预测,在决策生成的过程中具有重要的参考价值),从而可很好地支持人们的决策,回答出“为什么”(Why)。DM属于客观计算,只和已知数据有关,从而避免了主观和经验因素的影响。因此DM在商业、工业领域中已得到了广泛的应用,显示出了强大的生命力[57~58]。
  已有研究人员开始将DM技术引入电力系统故障诊断,并取得了一些成功的经验,利用DM技术用于决策支持和控制[59,60]。如在常规的电力系统运行模式下,需要依赖经验丰富的专家,一旦电力系统发生故障时,系统中保护装置的动作信息自动传递给调度中心。调度员则需要根据经验从这些信息中判断出故障的原因和故障的具体位置,由此来实施具体的隔离故障和恢复处理。为了减少损失要在极短时间内完成,这对调度员的压力很大。这种故障处理模式已无法适应,特别在信息流量庞大的今天。因任何人面对2000个/分钟数据流组成的数据表都不可能进行有效的处理。基于粗糙集的DM方法具较强的定性分析能力[61],能从给定问题的数据分析,通过不可分辨关系和不可分辨类确定给定问题的近似解,从信息表中去除冗余属性,获取该问题的内在规律,即属性约简,并能估计某一属性的重要程度,得到分类规则的能力。因此,DM可将每一种状态的故障特征提取出来,将其作为调度人员判断电力系统处于何种状态和如何快速做出故障处理和决策的有力工具。
  DM技术在电力系统故障诊断中的应用目前正处于起步阶段,解决如何将DM的算法与诊断对象相结合,确定出诊断对象的诊断模型如分类模型、回归模型、时间序列模型、聚类模型、关联模型、序列模型及如何将DM与传统人工智能技术相结合,如获取对象的模糊隶属度是值得进一步深入研究探讨的课题。

9 智能型电力系统故障诊断总结
  本文对ES、ANN、模糊逻辑推理、GA等各种人工智能技术在电力系统故障诊断中的应用进行了概括;从实用化的观点,对各种算法的适用特点进行了分析;并指出了人工智能技术在电力系统故障诊断发展的新方向和趋势。

参考文献

1 Liu Chen ching,Daniela A Pierce,Song Haili.Intellige-nt system applications to power systems[J].IEEE Computer Applications in Power,1999,10(4):21-24
2 毕天姝,倪以信,杨奇逊.人工智能技术在输电网络故障诊断中的应用述评[J].电力系统自动化,2000,24(25):11-16
3 韩桢祥,文福栓,张琦.人工智能在电力系统中的应用[J].电力系统自动化,2000,24(2):2-10
4 Dillon T S.Expert System Applications in Power Systems[M].Prentice Hall,1990
5 孙雅明.人工智能基础[M].北京:水利电力出版社,1992
6 杨以涵等.专家系统及其在电力系统的应用[M].北京:水利电力出版社,1995
7 Fukul C,et al.An expert system for fault sectionestimation using information from protective relay and circuit breaker[J].IEEEPWRD,1986,1(4):83-91
8 Shahram B Jadio,Jeyasurya B,Khaparde SA.Powersystem fault diagnosis expert system using PROLOG[C].In:4th IEEE Region 10th International Conference-TENCON'89,1989:778-78
9 Lee Heung Jae,Ahn Bok Shin,Park Young Moon.Afault diagnosis expert system for distributionsubstations[J].IEEE transaction on power delivery,2000,15(1)
10 Zhou Guozhong,Sun Yaming.An expert system forswitching operation planning in a dispatching centre[J].Int.Journal of Engineering Intelligent Systemsfor ElectricalEngineering and communication 1994,2(2):143-150
11 Pietro B,Ulrico C G.Fault diagnosis through historyreconstruction:An application to power transmissionnetworks[J].Expert Systems with Applications,1997,12(1):37-52
12 McArthur S D J,Dysko,et al.The application ofmodel based reasoning within a decision supportsystem for protection engineers[J].IEEETransaction on Power Delivery,1996,11(4):1748-1754

上一页  [1] [2] [3] [4] [5]  下一页


本文关键字:技术  人工智能  电工文摘电工技术 - 电工文摘