其中:Zc为电缆的特性阻抗,Z为电缆故障点的等效波阻抗。对于低电阻故障,若故障点对地电阻为R,则该点的等效波阻抗Z=R//Zc;对于开路故障,若故障电阻为R,则该点的等效阻抗Z=R+Zc。
当-1<β<0时:说明低阻抗点存在反射波,且反射波与入射波反极性。R愈小,β愈大,Ue愈大;
当R=0为短路故障时,β=-1,Ue= -Ui:电压波在短路故障点产生全反射;
当0<β<+1时:说明开路故障点也存在反射波,且反射波与入射波同极性。R愈大,β愈大,Ue愈大;
当R=∞,即为断线故障时,β=+1,Ue= -Ui:电压波在断线故障点产生开路全反射。
实际用仪器测量低阻、开路故障时,是由机内产生一宽度为0.1~2µs、幅度大于120V的低压脉冲,在t0时刻加到电缆故障相一端。此时脉冲以速度v向电缆故障点传播,并经过同样的时间∆t时间后到达故障点,并产生反射脉冲,反射脉冲波又以同样的速度v向测量端传播,并经过同样的时间∆t于t1时刻到达测量端。若设故障点到测量端的距离为L,则有如下关系:
所以只要记录t0和t1时刻,就可以测出测量端到故障点的距离。
当对电缆全长进行校准时,往往使电缆终端开路。因此,电缆全长的校准相当于电缆断线故障的测量情况。电缆存在中间接头时,由于接头处的电缆形状及其绝缘介质等的变化,引起了该点特性阻抗的变化。根据电磁波传输理论,该点也存在一定的反射。
对于高阻故障,由于故障点电阻较大,此点的反射系数β很小或几乎等于零,用低压脉冲法测量时,故障点的反射脉冲幅度很小或不存在反射,因而仪器分辨不出来。这时需要用高压闪络测量法进行故障探测。
高压闪络法是由直流高压发生器产生一负的直流高压,加到电缆故障相,当电压高到一定数值后,电缆故障点产生闪络放电,瞬间被电弧短路,故障点便产生一跳变电压波在故障点与测量端之间来回传输,这时只要测量波两次经过某一端的时间差即可求出故障点的距离。
用于击穿高阻故障点的电源也可以是冲击高压。在用冲击放电进行高阻探测时,应特别注意电缆的耐压等级,所选用的冲击电压的幅值应不超过正常运行电压的3.5倍。
2、电缆故障精确定位技术
由于电缆线路不可能完全直线敷设,用电缆故障探测仪仅能对电缆故障的大致位置进行判断,而不能确切给出电缆敷设后的准确故障点,所以电缆故障精确定位十分重要。
传统的电缆故障定点方法是听声法。这种方法的特点是简单易行,特别是放电声较大的时候,还是比较理想的。然而,当故障点的直流电阻较小时,放电声不太大,这时难以奏效。现在较普遍使用的定点仪是将微弱的机械振动波首先转换成电信号,由放大电路将这一电信号进行足够的放大后,再通过耳机还原成声音,然后通过人机的有机配合,准确地确定故障点的位置。
不同性质的电缆故障,在定点技术上略有差异:
(1)对于高阻故障的定点,由于故障的阻抗较高,探测时施加的冲击电压较高,故障点才会发生闪络放电,故放电声和由此而产生的冲击振动波一般说来都比较大,较便于收听、分析和辨别。
(2)对于低阻故障的定点,由于这类故障电阻小,因此故障点的放电间隙也小,致使施加的冲击高压在不很高的情况下,故障点便发生闪络放电。这时因闪络放电而产生的冲击振动波也小,再加上现场其他因素的干扰,放电声往往不易分辨甚至听不到放电声。这时可控制冲击电压的高低,并通过加大贮能电容器的电容量,增强放电强度,从而获得较强、较大的放电声,便于收听、分析和判断故障点的精确位置。
(3)对于开路故障的定点,是在故障相的一端加冲击高压,而故障相的另一端用另外两相和电缆铅包连接后充分接地,然后利用定点仪在粗测范围内进行定点。因开路故障类似于高阻故障,其定点方法与高阻故障的定点方法相同。
如果故障点就在测试端附近,这时故障点的放电声会被球隙的放电声所淹没,因而不易被测听到。当遇到这种情况时,可以将球间隙放到远离测试端的另一端,并通过已知的正常相对故障相加电压,从而达到故障相闪络放电的目的。这时因串入回路的球间隙远离测试端,因此故障点的放电声就比较容易监听到。
本文关键字:电力电缆 电力配电知识,电工技术 - 电力配电知识
上一篇:有载调压变压器工作原理及注意事项