在图1c中,计量芯片将同时计量经锰铜电阻取样的火线电流和经CT取样的零线电流。在正常情况下,漏电流是很小的,所以火线回路和零线回路的电流基本一致,可以给电能计量模块计量芯片预置一个两电流通道的窃电比例因子RT,当电流通道1的电流I1>I2*RT或电流通道2的电流I2>I1*RT时,计量芯片认为两个电流通道电流不平衡,表明有窃电行为发生。
有一点需要注意,当负载很小或者窃电者同时旁路两个电流通道进行窃电时,可能会发生电流不平衡的错误检测,这是应该避免的。应根据不同的应用给计量芯片预置相应的电流不平衡检测开始电流ITamp,只有当负载电流大于ITamp时,电流不平衡的检测才起作用。
4. 防电流反向窃电
调换进出线或者利用变压器施加低压反向大电流是窃电者经常采取的窃电行为。窃电者企图让电表负计量,使计量值向后退,这种窃电行为比接地或旁路电流的窃电行为更具侵害性。图1d给出了电表反接窃电的模型。
电流反接时的防窃电,要求计量模块有自动检测电流反向功能,不需要任何的辅助元器件就能实现电流反向的检测。同时,可以给电能计量模块预置电流反向时的处理方式,如电流反向时取功率或电能的绝对值为测量值等等。
对于电流反接时的防窃电,有一点需要注意,当负载电流非常小的时候,可能会出现错误的电流反向警告。可以设定一个电流反向检测的最小电流极限,当小于这个最小电流极限时,关闭电流反向检测功能,防止错误的电流反向警告。
5. 防移除电压窃电
5.1 移除电压对工作电源的影响
移除电压表现为移除电表接线中的一路,通常窃电者移除零线,使得电表没有电网电压的进入,导致电表不能正常计量或不能工作,如图2a所示。对付这种窃电行为,可用一个低成本的电流互感器CT,从其余的连接电表导线中流经的电流上窃取很小的电能给电能表供电,使电能表实现防窃电测量。由于受到电能表成本、电能表表壳的尺寸以及电子元器件能够承受的最大电流等诸多因素的影响,选择从电流上窃电的CT是受限制的,因此能从电流上窃电给电能表供电的电能也受限制。当负载电流大于1A-2A时应能实现电能表的防窃电测量,而当负载电流很小时,能从电流上窃取的电能将不能胜任电能表供电,因此,需要采用低功耗计量芯片。
图2:(a)移除电压窃电。(b)移除电压时的防窃电测量。(c)移除电压窃电补充。
图2b为移除电压时的防窃电测量方案。在这个方案中,除电池外,电能表的电源供给由两部分组成,一是火线和零线的主电压提供电源,另一部分是供电CT从电流上窃取提供电源,如图2b中的供电 CT。所以当移除电压时,供电CT从电流上窃取的电源仍能保持电能表工作,进行防窃电测量。
供电CT要在小电流时也能够驱动电能表工作。通常当负载电流为1A时,一个小的CT提供等效于1mA/3V,这已经可以实现防窃电测量。当然如果选用更大的CT,能降低移除电压防窃电测量负载的最小电流极限值,但是这一方面将增加供电CT的成本,另一方面,当负载电流很大时,电源管理相关的元器件将承受很大的压力,并有可能损坏,所以以选用大CT的方法是不可取的。
5.2 移除电压对计量测量的影响
本文关键字:电能表 电工基础,电工技术 - 电工基础