发电机低励(表示发电机的励磁电流低于静稳极限所对应的励磁电流)或失磁,是常见的故障形式。发电机低励或失磁后,将过渡到异步发电机运行状态,转子出现转差,定子电流增大,定子电压下降,有功功率下降,无功功率反向并且增大;在转子回路中出现差频电流;电力系统的电压下降及某些电源支路过电流。所有这些电气量的变化,都伴有一定程度的摆动。
(1)对电力系统来说,发电机发生低励或失磁后所产生的危险,主要表现在以下几个方面:
1)低励或失磁的发电机,由发出无功功率转为从电力系统中吸收无功功率,从而使系统出现巨大的无功差额,发电机的容量越大,在低励和失磁时产生的无功缺额越大,如果系统中无功功率储备不足,将使电力系统中邻近的某些点的电压低于允许值,甚至使电力系统因电压崩溃而瓦解。
2)当一台发电机发生低励或失磁后,由于电压下降,电力系统的其他发电机在自动励磁调节器的作用下自动增大无功输出,从而使某些发电机、变压器或线路过电流,其后备保护可能因过电流而跳闸,使故障范围扩大。
3)一台发电机低励或失磁后,由于该发电机有功功率的摆动,以及系统电压的下降,可能导致相邻的正常运行发电机与系统之间,或电力系统的各部分之间失步,使系统产生振荡,甩掉大量负荷。
(2)对发电机本身来说,低励或失磁产生的不利影响,主要表现在以下几个方面:
1)由于出现转差,在发电机转子回路中出现差频电流。对于直接冷却高利用率的大型机组,其热容量裕度相对降低,转子更容易过热。流过转子表层的差频电流,还可能使转子本体与槽楔、护环的接触面上发生严重的局部过热甚至灼伤。
2)低励或失磁的发电机进入异步运行之后,发电机的等效电抗降低,从电力系统中吸收的无功功率增加。低励或失磁前带的有功功率越大,转差就越大,等效电抗就越小,所吸收的无功功率就越大。在重负荷下失磁后,由于过电流,将使定子过热。
3)对于直接冷却高利用率的大型汽轮发电机,其平均异步转矩的最大值较小,惯性常数也相对降低,转子在纵轴和横轴方面,也呈较明显的不对称。由于这些原因,在重负荷下失磁后,这种发电机的转矩、有功功率要发生剧烈的周期性摆动,将有很大甚至超过额定值的电磁转矩周期性地作用到发电机的轴系上,并通过定子传递到机座上,此时,转差也作周期性变化,其最大值可能达到4%~5%,发电机周期性地严重超速。这些都直接威胁着机组的安全。
4)低励或失磁运行时,定子端部漏磁增强,将使端部的部件和边段铁芯过热。
由于发电机低励和失磁对电力系统和发电机本身的上述危害,为保证电力系统和发电机的安全,必须装设低励失磁保护,以便及时发现低励和失磁故障并采取必要的措施。失磁保护检出失磁故障后,可采取的措施之一,就是迅速把失磁的发电机从电力系统中切除,这是最简单的办法。但是,失磁对电力系统和发电机本身的危害,并不像发电机内部短路那样迅速地表现出来。另一方面,大型汽轮发电机组,突然跳闸会给机组本身及其辅机造成很大的冲击,对电力系统也会加重扰动。
汽轮发电机组有一定的异步运行能力,例如,东方电机厂生产的600MW汽轮机组在失磁后允许40%负荷持续运行15min。因此,对于汽轮发电机,失磁后还可以采取另一种措施,即监视母线电压:当电压低于允许值时,为防止电力系统发生振荡或造成电压崩溃,迅速将发电机切除;当电压高于允许值时,则不应当立即把发电机切除,而是首先采取降低原动机出力等措施,并随即检查造成失磁的原因,予以消除,使机组恢复正常运行,以避免不必要的事故停机。如果在发电机允许的时间内,不能消除造成失磁的原因,则再由保护装置或由操作人员手动停机。在我国电力系统中,就有过多次10~300MW机组失磁之后用上述方法避免事故停机的事例。通过大量研究并试验,证明容量不超过800MW的二极汽轮发电机若失磁,机组快速减载到允许水平,只要电网有相应无功储备,可确保电网电压,失磁机组的厂用电保持正常工作的情况,失磁机组可不跳闸,尽快恢复励磁。
应当明白一点,发电机低励产生的危害比完全失磁更严重。原因是低励时尚有一部分励磁电压,将继续产生剩余同步功率和转矩,在功角0~360°的整个变化周期中,该剩余功率和转矩时正时负地作用在转轴上,使机组产生强烈的振动,功率振荡幅度加大,对机组和电力系统的影响更严重。此情况下一般失步保护会动作,如果失步保护未动作,出于大机组的安全考虑,应迅速拉开灭磁开关。
本文关键字:发电机 电工基础,电工技术 - 电工基础
上一篇:发电机定子单相接地故障