3 智能漏电保护的设计
系统由总保护、分支保护、二总线通信接口三大部分组成。各分支保护检测到的实时井下数据可通过二总线进行通信,设井下馈线分支出口数为n。
总保护处为性价比较高的单片机8051系统,系统有A/D转换器、输入/输出接口、闪存、输出执行电路等组成。总保护处装有附加直流电源式漏电保护,可以检测出电网总的绝缘情况,同时通过漏电直流检测电路的取样,监测井下电网A,B,C三相的绝缘电阻的变化,并由电路显示,所以容易查找和处理故障相。正常工作时循环显示电网的工作参数和对地的绝缘水平,故障跳闸后循环显示故障时的参数和状态,从而大大提高了判断故障的效率。若设有不同的给定值存储在微机内,微机就可以判断出故障是接地故障、人身触电事故还是绝缘电阻下降故障。
总保护处通过总线接口和二总线相连,进行通信。在总保护处和分出口处检测各支路的零序电流,分支保护处编解码芯片接收总保护处的地址、控制信息,当和本身地址相同时,启动A/D转换,进行零序电流检测,并通过二总线将电流值上传给总保护,通过总保护进行集中式选线判断故障相,由总保护发出口跳闸指令以切断故障线路。
漏电保护原理中指出,当发生接地故障时,流过故障相的故障电流是所有非故障相电流之和,故障项的零序电流为所有出口处零序电流数值中的最大者。集中式选线综合比较所有零序电流的数值,考虑到零序电流互感器会产生不平衡电流,而不同的互感器的不平衡电流值不同,所以仅比较零序电流值大小将会有一定的误差。现采用简单的差值比较方法,即将各电路所测出时间间隔相同的故障前后2次零序电流值相减,比较各零序电流的算术差值。故障线路零序电流的增量是所有线路零序电流增量之和。判定差值最大与其他线路有很大差距的线路为故障线路,从而完成保护的横向选择性,并有效地避免了由互感器不平衡电流带来的误差。
总保护通过电流差值集中判断,找到最大值及分支故障线路,然后发跳闸指令,由分支开关动作;若各分支的零序电流之差相差不大时,判定为母线故障,由总保护处开关动作。判定为分支故障发跳闸指令后,总保护处继续监视电网的运行,若故障仍然存在,说明跳闸失败或判断失误,为保证安全,由作为后备保护的总保护跳闸切断故障,无长时间的延时。
4 结论
二总线系统结构简单,可靠性非常高,基于二总线的漏电保护系统,全面提高了矿用检漏装置的性能,缩短了总保护初跳闸时间,保证了井下的供电安全。
本文关键字:暂无联系方式电工技术,电工技术 - 电工技术
上一篇:漏电保护器的安全性能剖析