本部分从对掺金g-硅的特性深入研究入手,开发出一种新型的热敏元件,即掺金g-硅热敏电阻。介绍了该新型热敏电阻的工作原理、技术特性和应用特点。
2.掺金g-硅热敏电阻的工作机理从图2可知,Z-元件的结构依次是:金属电极层—P+欧姆接触区—P型扩散区—P-N结结面—低掺杂高补偿N区,即n-.i区—n+欧姆接触区—金层电极层。可见Z-元件是一种改性PN结,它具有由p+-p-n-.i-n+构成的四层结构,其中核心部位是N型高阻硅区n-.i,特称为掺金g-硅区。掺金g-硅区的建立为掺金g-硅热敏电阻奠定了物理基础。
Z-元件在正偏下的导电机理是基于一种“管道击穿”和“管道雪崩击穿”的模型。Z-元件是一种PN结,对图2所示的Z-元件结构可按P-N结经典理论加以分析,因而在p-n-.i两区中也应存在一个自建电场区。该电场区因在P区很薄,自建电场区主要体现在n-.i区,且几乎占据了全部n-.i型区,这样宽的电场区其场强是很弱的,使得Z-元件呈现了高阻特性。如果给Z-元件施加正向偏压,这时因正向偏压的电场方向同Z-元件内部自建电场方向是相反的,很小的正向偏压便抵消了自建电场。这时按经典的PN结理论分析,本应进入正向导通状态,但由于Z-元件又是一种改性的PN结,其n-.i型区是经重金属掺杂的高补偿区,由于载流子被重金属陷阱所束缚,其电阻值在兆欧量级,其正向电流很小,表现在“L”曲线是线性电阻区即“M1”区。这时,如果存在温度场,由于热激发的作用使重金属陷阱中释放的载流子不断增加,并参与导电,必然具有较高的温度灵敏度。在M1区尚末形成导电管道,如果施加的正向偏压过大,将产生“管道击穿”,甚至“管道雪崩击穿”,将破坏了掺金g-硅新型热敏电阻的热阻特性,这是该热敏电阻的特殊问题。
在这一理论模型的指导下,不难想到,如果将Z-元件的n-.i区单独制造出来,肯定是一个高灵敏度的热敏电阻(由于半导体伴生着光效应,当然也是一个光敏感电阻),由此可构造出掺金g-硅新型热敏电阻的基本结构,如图3所示。由于掺金g-硅新型热敏电阻不存在PN结,其中n-.i层就是掺金g-硅,它并不是Z-元件的n-.i区。测试结果表明,该结构的电特性就是一个热敏电阻。该热敏电阻具有NTC特性,它与现行NTC热敏电阻相比,具有较高的温度灵敏度。
3.掺金g-硅热敏电阻的生产工艺
掺金g-硅热敏电阻的生产工艺流程如图4工艺框图所示。可以看出,该生产工艺过程与Z-元件生产工艺的最大区别,就是不做P区扩散,所以它不是改性PN结,又与现行NTC热敏电阻的生产工艺完全不同,这种掺金g-硅新型热敏电阻使用的特殊材料和特殊工艺决定了它的性能与现行NTC热敏感电阻相比具有很大区别,其性能各有优缺点。
4.掺金g-硅热敏电阻与NTC热敏电阻的性能对比
从上述结构模型和工艺过程分析可知,掺金g-硅层是由金扩入而形成的高补偿的N型半导体,不存在PN结的结区。它的导电机理就是在外电场作用下未被重金属补偿的剩余的施主电子参与导电以及在外部热作用下使金陷阱中的电子又被激活而参与导电,而呈现的电阻特性。由于原材料是高阻g-硅,原本施主浓度就很低,又被陷阱捕获一些,剩余电子也就很少很少。参与导电的电子主要是陷阱中被热激活的电子占绝对份额。也就是说,掺金g-硅热敏电阻在一定的温度下的电阻值,是决定于工艺流程中金扩的浓度。研制实践中也证明了这一理论分析。不同的金扩浓度可以得到几千欧姆到几兆欧姆的电阻值。金扩散成为产品质量与性能控制的关健工序。
本文关键字:暂无联系方式电工技术,电工技术 - 电工技术