您当前的位置:五五电子网电子知识电工技术电工技术汽车MEMS传感器应用及发展 正文
汽车MEMS传感器应用及发展

汽车MEMS传感器应用及发展

点击数:7849 次   录入时间:03-04 11:42:34   整理:http://www.55dianzi.com   电工技术
  按检测方式,微加速度计有压阻式、电容式、隧道式、共振式、热形式等几种。其中,电容式微加速度计质量块在有加速度时向下运动,与边框上的另一个电极的距离发生变化,通过检测电容的变化可获得质量块运动的位移,主要结构分为悬臂摆片式和梳齿状的折叠梁式,并变异成其它类型。前者结构相对简单些,制作上也多采用体硅加工方法,简单的摆片式结构由上、下固定电极和可动敏感硅悬臂梁电极组成,用半导体平面工艺各向异性腐蚀,静电封接技术封装完成制作。后者可看作是悬臂梁的并、串组合,设计上要复杂得多,微加工方法则以表面牺牲层技术为主,多晶硅材料的各向同性性质可保证微机械性能的对称性,批量加工精度高,采用这种结构的敏感部分尺寸做得很小,实现与外围电路的单片集成。电容式微加速度计的灵敏度高、噪音低、漂移小、结构简单,在汽车安全气囊系统和防滑系统获得广泛应用,其检测范围与准确度的性能指标分别为50g(重力加速度),200°/s、500mg、10°/s、100°/s、1°/s,安全气囊系统检测碰撞的微加速度计的检测范围为±30~50g,精度100mg,检测侧面碰撞大约为250g或500g,防滑稳定系统的测量范围±2g,精度10mg。

微加速度计商业化最重要的驱动力来自汽车工业,最成功的是美国模拟器件公司的ADXL05和ADXL50系列单片集成差动电容式加速度计,现月产量达到200万只。美国摩托罗拉公司批量生产汽车用MMAS40G电容式加速度计,选择双芯片设计制作技术,封装为双列直插式或单列直插式塑封,加速度测量范围±40g。美国EG&GIC传感器公司建立了MEMS加工生产线,先后开发成功3255、3000系列压阻式加速度计,3255型主要用于汽车安全系统,敏感芯片与信号自理芯片封装在表面贴装的外壳内。德国博世、日本电装公司也有类似产品。微加速度计正替代以往的机电式加速度传感器,并伴随着汽车安全气囊系统日趋普及而高速增长。

  微机械陀螺

  微机械陀螺是一种振动式角速率传感器,在汽车领域的应用开发倍受关注,主要用于汽车导航的GPS信号补偿和汽车底盘控制系统,应用潜力极大。

  微机械陀螺中有两个振动模式,一个是横向振动模式,即驱动振动模式,通常称为参考振动,在科氏力作用下会产生附加运动;另一个是法向振动模式,即敏感振动模式,对反映科氏力的附加运动的检测,获得包含在科氏力中的角速率信息。

  按所用材料,微机械陀螺分为石英和硅振动梁两类,石英材料结构的品质因数Q值最高,陀螺特性最好,有实用价值,是最早产品化的,美国德尔科、BEI公司采用MEMS技术,批量生产单轴、三轴固态石英压电陀螺,可用于高档汽车、导航、飞机、航天等市场上。德国博世、日本松下的汽车用角速率传感器的单只售价25美元。

  石英加工难度大,成本很高,无法满足汽车的低成本要求。硅材料结构完整,弹性好,比较容易得到高Q值的微机械结构,随着深反应离子刻蚀技术的出现,体硅微机械加工技术的加工精度显著提高,在硅衬底上用多晶硅制作适宜批量生产,驱动和检测较为方便,成为当前低成本研发的主流。从硅微机械陀螺的结构上,常采用振梁结构、双框架结构、平面对称结构、横向音叉结构、梳状音叉结构、梁岛结构等,用来产生参考振动的驱动方式有静电驱动、压电驱动和电磁驱动等,而检测由于科氏力带来的附加振动的检测方式有电容检测、压电检测、压阻检测。静电驱动、电容检测的陀螺设计最为常见,已有部分产品研制成功。

现有的硅微机械陀螺产品的性能不高,精度一般在0.1°/s的水平,只能满足汽车应用要求,但要获得大量应用,还需解决测量电路和封装稳定性、可靠性、价格等诸多问题。

  MEMS传感器的产业化

  全球汽车电子化及汽车计算机控制系统的兴起,推动了汽车MEMS传感器的发展。在汽车上所有系统中,几乎都能找到MEMS的用武之地,车越好,所用的MEMS就越多。BMW740i汽车上就有70多只MEMS,德国海拉集团在欧洲售后市场提供250种汽车传感器,很多传感器可用MEMS替代。据报道,2000年汽车MEMS传感器的销售额为12.6亿美元,预计2004年将增长到23.5亿美元,有人预测其市场增长更大,总之,在今后的汽车传感器中会进一步占有更大的份额。

上一页  [1] [2] [3]  下一页


本文关键字:传感器  汽车  电工技术电工技术 - 电工技术

《汽车MEMS传感器应用及发展》相关文章>>>