您当前的位置:五五电子网电子知识电子学习布线-制版技术PCB布线设计 正文
PCB布线设计

PCB布线设计

点击数:7471 次   录入时间:03-04 11:37:01   整理:http://www.55dianzi.com   布线-制版技术


 

图1 SCX015压力传感器输出端的电压由仪表放大器(A1和A2)放大。在仪表放大器之后,添加了一个低通滤波器 (A3),以消除来自12位A/D转换器转换的混叠噪声。


 

图2 来自于12位A/D转换器MCP3201的数据的时域表示,产生了有趣的周期信号。此信号源可追溯到电源。


 

图3 电源噪声充分降低后,MCP3201的输出码一直是一个码,2108。

  本文要论述的电路如图1所示。

   电源噪声

  电路应用中的常见干扰源来自电源,这种干扰信号通常通过有源器件的电源引脚引入。例如,图1中A/D转换器输出的时序图如图2所示。在此图中,A/D转换器的采样速度是40ksps,进行了4096次采样。

  在此例中,仪表放大器、参考电压源和A/D转换器上没有加旁路电容。另外,电路的输入都是以一个低噪声、2.5V的直流电压源作为基准。

  对电路的深入研究表明,时序图上看到的噪声源来自于开关电源。电路中添加了旁路电容和扼流环。电源上加了一个10mF的电容,并且在尽可能靠近有源元件的电源引脚旁放置了三个0.1mF的电容。在产生的新时序图上可以看到,产生了稳定的直流输出,图3所示的柱状图可验证这一点。数据显示,电路的这些更改消除了来自电路信号路径的噪声源。

造成干扰的外部时钟

  其它系统噪声源可能来自时钟源或电路中的数字开关。如果这种噪声与转换过程有关,它不会作为转换过程中的干扰出现。但是,如果这种噪声与转换过程无关,采用FFT(快速傅立叶变换)分析,可以很容易发现这种噪声。


 

图4 耦合到模拟走线的数字噪声有时被误解为宽带噪声。FFT图可以很容易识别这种所谓 “噪声”的频率,因此可识别出噪声源。


 

图5 放大器轻微过激励,会使信号产生失真。通过这种转换的FFT图,可以很快发现信号的失真。

  时钟信号干扰的示例可参见图4所示的FFT图。此图使用了图1所示的电路,并添加了旁路电容。在图4所示的FFT图中看到的激励,由电路板上的19.84MHz时钟信号产生。在此例中,布线时几乎没有考虑走线之间的耦合作用,在FFT图中可以看到忽略此细节的结果。

  这个问题可以通过修改布线来解决,将高阻抗模拟走线远离数字开关走线;或者在模拟信号路径中,在A/D转换器之前加抗混叠滤波器。走线之间的随机耦合在某种程度上更难以发现,在这种情况下,时域分析可能比较有效。

放大器使用不恰当

  回到图1所示的电路,在仪表放大器的正相输入端施加一个1kHz的交流信号。此信号不是压力传感的特性,但是可以采用这个示例来说明模拟信号路径中器件的影响。

  图5所示的FFT图显示了施加上述条件后的电路性能。注意基波看起来有失真,许多谐波也有同样的失真。失真是由于使放大器轻微过激励引起的。解决此问题的方法是降低放大器增益。

结语

  解决信号完整性问题可能会花费很多时间,尤其是当工程师没有工具来解决棘手的问题时。在“窍门箱”中有三种最佳的分析工具:频域分析工具(FFT)、时域分析工具(示波器照片)和直流分析工具(柱状图)。工程师可以用这些工具来识别电源噪声、外部时钟源和过激励放大器失真。


 对于12位传感系统的布线,应用的电路是一负载单元电路,该电路可精确测量传感器上施加的重量,然后将结果显示在LCD显示屏上。系统电路原理图如图1所示。采用的负载单元是Omega公司的LCL-816G。LCL-816G传感器模型是由四个电阻元件组成的桥,需电压激励。将5V激励电压加在传感器高端,施加900g最大激励时,满刻度输出摆幅为±10mV差分信号。该小差分信号被双运放仪表放大器放大。

  根据电路精度要求,选择一个12位A/D转换器。当转换器将输入端的电压进行数字化后,数字码经转换器SPI端口发送到单片机。然后,单片机用查找表将来自A/D转换器的数字信号转换为重量。此时如需要的话,线性化和标定工作可由控制器代码实现。完成这一步后,结果送到LCD显示器。最后一步是为控制器写固件。电路设计好之后,即可设计印刷电路板和布线了。

  查看这个完整的电路原理图时,若使用自动布线工具,经常要返回来对布线做很大的修改。如果自动布线工具可以实现布线限制,可能还有成功的可能性。如果自动布线工具没有限制选项的话,最好不要使用自动布线工具。


 

图1 负载单元传感器输出端的信号由双运放仪表放大器放大,然后由12位A/D转换器MCP3201滤波和数字化。每次转换的结果显示在LCD显示屏上。


 

图2 在精度高于12位的电路中,PCB上有源元件的放置很重要。要将高频元件 和数字器件尽量靠近接插件放置。


 

图3 图1电路的顶层布线和底层布线,此布线中没有地平面和电源平面。注意:为降低电源线的感抗,电源线要比信号线宽很多。


 

图4 在没有地平面或电源平面的PCB(PCB布线如图3所示)中,对A/D转换器输出4096次采样的柱状图。电路的噪声码宽度为15个码。

   布线的一般准则

  器件布局

  既然是采用手工布线,那么第一个步骤是在板上放置器件。将噪声敏感器件和产生噪声器件分开放置。完成这个任务有两个准则:

  1. 将电路中器件分成两大类:高速(>40MHz)器件和低速器件。如果可能的话,将高速器件尽量靠近板的接插件和电源放置。

  2. 将上述大类再分成三个子类:纯数字、纯模拟和混合信号。将数字器件尽量靠近板的接插件和电源放置。

  电路板的布线策略要符合图2所示的器件布局图。注意图2a中高速器件、低速器件与电路板的接插件和电源之间的关系。在图2b中,数字器件最靠近电路板的接插件和电源,与其它数字和模拟电路分离开了。纯模拟器件距离数字器件最远,以确保开关噪声不会耦合到模拟信号路径中。A/D转换器的布线策略在本刊2004年1月中有详细论述。

  地和电源策略

  确定了器件的大体位置后,就可以定义地平面和电源平面了。实现这些平面是需要一些策略技巧的。

  在PCB中不使用地平面是很危险的,尤其是在模拟和混合信号设计中。其一,因为模拟信号是以地为基准的,地噪声问题比电源噪声问题更难应对。例如,在图1所示电路中,A/D转换器(MCP3201)的反相输入引脚是接地的;二,地平面还对噪声有屏蔽作用。采用地平面可以很容易解决这些问题,但是,如果没有地平面,要克服这些问题几乎是不可能的。

  这里,假设不需要地平面。图1所示的电路无地平面布线,如图3所示。
“不需要地平面”的理论还行得通吗?这可以通过数据来验证。在图4中,对A/D转换器进行了4096次采样并记录了数据。在采集数据时,没有在传感器上施加激励。采用这种电路布线,控制器专用于与转换器接口,并将转换器的结果发送到LCD显示器。


 

图 5 图1电路的顶层和底层布线。注意此布线中有地平面。


图 6 在有地平面的PCB(PCB布线如图5所示)中,对A/D转换器输出4096次采样的柱状图。噪声码宽度为11个码。

上一页  [1] [2] [3] [4] [5]  下一页


本文关键字:暂无联系方式布线-制版技术电子学习 - 布线-制版技术