变压器最重要的参数是原边和副边之间的匝比。该匝比应能保证变换器在最低输入电压条件下,维持正常的输出电压。在图20所示的变换器中,输入电压下限为36V。而在实际当中,考虑到欠压锁定电路的容差,输入电压可能会低至29V。该值减去变换器在满载时DPA-Switch的漏-源电压和变压器绕组高频交流电阻上的压降,然后乘以最大占空比,再除以满载时输出电压与输出整流二极管压降的和,所得结果就是变压器匝比的上限。注意,由于DPA-Switch采用电压模式控制,其最大占空比可以超过50%。
(2)磁芯和绕组
选择磁芯时需要着重考虑的是磁芯的材质,所选磁芯的材质必须保证在DPA-Switch工作频率下的损耗最低。同时还要综合考虑温度、绕组面积、磁芯截面积以及磁芯表面积与磁芯体积之间的比率等因素对功耗及变压器热阻的影响。变压器设计完成后,还需要通过样机进行校验,以确保变压器在变换器实际运行过程中的温升符合设计要求。
选择绕组的线径时,必须要考虑趋肤效应和临近效应。根据经验,当输出电流超过6A时,绕组最好采用扁平薄铜带。
(3)其他
绕线长度应尽可能的短,否则绕组本身的阻性损耗将不可忽略。
为了减小损耗,应尽可能的减小变压器的漏感,推荐初级绕组和次级绕组采用间绕方式。另外,绕制变压器时无需留气隙。
如果变压器上绕有偏置绕组,其匝数必须足够多,以保证在最低输入电压条件下维持8V的偏置电压。
交流磁通密度对磁芯的损耗也有影响。因此,交流磁通密度必须保持在1000-1500高斯之间。
5.3.4 输出电感
输出电感的电感量主要取决于变换器对输出纹波电流的要求。如果输出电感较小,就必须增大输出电容的容量,以使纹波电流的大小符合设计要求。注意,必须选用低ESR的输出电容。输出电感中的纹波电流较大,意味着DPA-Switch中的峰值电流也较大,最终将导致系统损耗的增加及效率的降低。
设计输出电感主要参照纹波电流峰-峰值与电感平均电流的比值K△I。K△I越小,表示输出电感量越大,输出纹波电流越低。该值的选取应综合考虑输出电感的体积、输出电容的大小、效率以及成本等因素。推荐K△I的取值在15%至20%之间。如果K△I过高,将会导致输出电容上的应力和纹波电压的增大。为减小阻性损耗,输出电感绕组的匝数也应尽可能的少。另外,选用低损耗材质的磁芯。
在用PI Expert专用设计软件进行设计时,程序会自动计算出输出电感量、RMS电流以及峰值贮存能量等参数。在选用磁环时需要参考峰值贮存能量这一参数,该参数关系到磁环是否会饱和。
如果输出电感上绕有偏置绕组,应确保该绕组能够向光耦提供12V的偏置电压。偏置绕组的匝数可以通过输出电压最低值、输出整流二极管以及偏置整流二极管最大正向压降计算得到。
5.3.5 DPA-Switch的选取
选取DPA-Switch的第一个标准是峰值电流承受能力。根据变压器的匝比以及输出电感中的峰值电流,可以估算出变压器初级绕组中峰值电流的大小,此时可暂不考虑变压器磁化电流的影响。考虑裕量,所选DPA-Switch的电流额定值应比变压器初级绕组峰值电流估算值高10%。
选取DPA-Switch的第二个标准是功耗大小。如果不采用同步整流,DPA-Switch的功耗将占到系统总功耗的25%左右。如果所选的DPA-Switch功耗过大,可以考虑选用高一等级的DPA-Switch。
当输入电压较低时,阻性压降在功耗中起主要作用,由于大的DPA-Switch的RDS(ON)较低,因此其损耗也低,系统效率得以提高。但是,当输入电压较高时,由于DPA-Switch中RMS电流下降,而漏极电容上的损耗增加,此时RDS(ON)的降低对系统效率的影响很小。
5.3.6 箝位电路
为了防止DPA-Switch的漏极过压,需要加入箝位电路。图20中采用的箝位电路比较简单,即在DPA-Switch的漏极和源极之间加入了一只150V齐纳二极管,同时在变压器初级侧还跨接有一只箝位电容。在连续工作状态下,齐纳二极管不起作用,但在启动、负载瞬变以及过载过程中,该二极管将对DPA-Switch的漏极提供箝位保护。
变换器正常连续工作时,跨接在初级绕组上的箝位电容通过吸收漏感上的能量使漏-源电压低于齐纳二极管的击穿电压。箝位电容的大小由漏感和峰值电流的大小决定。该电容的取值应能保证漏感中的能量在下一个工作周期内大部分得到恢复。电容容量过小将导致齐纳二极管导通,而齐纳二极管上的功耗将影响系统的效率。电容容量过大将增大DPA-Switch的开通损耗,同样将导致系统效率的下降,而且还会对变压器的复位产生影响。根据经验,如果变换器的功率在10W-40W,则该电容的取值范围应在10pF至100pF之间。
5.3.7 变压器复位电路
为了防止变压器饱和,在每个开关周期内,变压器磁化电感中的磁通必须复位以维持伏秒积的平衡。变压器中储存的寄生能量以磁化电流的形式表现出来。变压器饱和相当于短路,必须依靠外部电路将磁化电感中的能量在变压器饱和之前转移走。变压器复位电路要求DPA-Switch的漏压高于输入电压。设计过程中,必须保证变压器复位电路不会加重DPA-Switch漏极电压的应力。
图23所示为实际电路中的变压器复位电路,在每个开关周期结束的时候,变压器中的磁通将被复位。该电路的核心元件是跨接在输出整流二极管上的串联RC网络。当DPA-Switch关断时,磁化电感中的电流通过变压器次级对电容CS进行充电。一方面,CS必须足够小以保证在磁化电流在最短的时间内归零。而另一方面,CS又必须足够大以保证漏-源电压在正常工作状态下低于齐纳二极管的箝位电压。RS的大小一般在1-5欧姆之间。
5.3.8 输出电容
输出电感中的纹波电流在输出电容上产生电压纹波。纹波电压一部分由电容内部的电流造成,另一部分则由电容的串联等效电阻产生。通常大部分的纹波电压都源自串联等效电阻,因此输出电容的容量要尽可能的大,而其串联等效电阻则应尽可能的低。与电感中的纹波电流类似,电容串联等效电阻上的纹波电压也是三角波。
在DC-DC变换器中,输出电容一般都选用固态钽电容,这是由于在变换器工作频率下,固态钽电容的串联等效电阻值和阻抗都较低。在反馈环路设计中,也需要考虑串联等效电阻的问题,因此串联等效电阻值的大小一定要合适。另外,需要注意的是,超出特定的温度范围后,串联等效电阻值将发生显著变化,进而输出纹波和反馈环路的稳定性都会受到影响,因此需要对变换器样机的极限温度参数进行测试,以保证串联等效电阻值保持相对稳定。
输出电容的额定电压值至少应比最大工作电压高出25%,降额因子为80%。例如,对于一个输出电压为5V的变换器,输出电容的额定电压值可取为6.3V或10V。电容的额定电压值越低,其体积越小,但其故障率会高一些。
5.3.9 反馈环路
反馈环路有三个重要的参数:截止频率、相位裕量和增益裕量。截止频率主要用来衡量系统的带宽。相位裕量在任何时候都不能低于45度,低于该值,系统将变得不稳定。另外,相位裕量还与系统的动态特性有关。相位裕量过低,系统的动态特性将变差。增益裕量的大小在6dB-10dB之间比较合适。
高频正激DC-DC变换器的频带宽度较大,不宜稳定,设计时大多采用逐周电流模式控制。DPA-Switch仍采用传统的电压模式控制,无需斜坡补偿,在占空比超过50%时仍能正常工作并保持稳定。如果变换器中含有光耦,则控制环路的截止频率应限制在10KHz。图24所示为采用TL431控制的反馈环路。
由输出电感和输出电容构成输出滤波器,其谐振频率的选取不应对反馈环路的设计造成影响,推荐取值范围在4KHz-6KHz之间。
与DPA-Switch的Control引脚相连的R4和C6一起构成了反馈环路的补偿网络。C6的取值范围应在47μF-100μF之间。
使用TL431的目的是在低频条件下获取较高的环路增益,而在高频条件下,光耦能够提供足够的增益。
5.3.10 空载运行
DC-DC变换器有两种工作模式:连续导通模式和非连续导通模式。两种工作模式下,变换器的控制特性是不同的。工作在连续导通模式的变换器对输出瞬变的响应速度比非连续导通模式时要快。但在轻载或空载条件下,如果不采取相应的措施,系统可能会变得不稳定。
在轻载条件下,DPA-Switch将自动进入“周期跳越”模式,此时开关频率下降,占空比低于5%。由于占空比很小,需要加大电容以维持8V以上的偏置电压。为了避免系统工作在空载状态下,可以在输出电容上并联一个小的预置负载。
5.3.11 同步整流
采用同步整流,变换器的效率比采用肖特基二极管整流时要高。对于一个输出电压为5V的DC-DC变换器,采用肖特基二极管整流后的效率能够达到85%。如果采用同步整流,变换器的效率有望达到90%,甚至更高。
本文关键字:控制器 变换电路,单元电路 - 变换电路