3)dv/dt大,一些电子开关器件易误导通。
33 什么是差动保护?变频器为什么不采用差动保护?
答: 差动保护是比较被保护设备输入和输出端口电流的大小或相位的继电保护。如图14 所示,流入保护装置的电力差动电流ICd=im+in,当被保护设备在正常运行或外部短路以及系统振荡时,由于im忆和in忆大小相等,方向相反,差动电 流icd 为零,保护不会误动作;当被保护设备本身发生内部短路时,差动电流将icd 不为零,当icd 值大于某一整定值时,保护将灵敏动作。
由于变频器中间的直流环节采用电容器,使得变频器在工作的时候其内部含有有源设备,这样,即使变频器正常工作时输入输出两端电流在某一时刻不满足平衡,这与差动保护机理相违背,所以变频器一般不采用差动保护。
34 IGBT 的原意及如何检测IGBT?
答:IGBT 全称是Insulated Gate Bipolar Transistor,绝缘栅双极型晶体管,是由BIT(双极型三极管)和MOS(绝缘栅型场效应管)组成的复合全控型电压驱动型电力电子器件,本质上是 一个场效应晶体管,只是在漏极和漏区之间多了一个P型层。
功率模块的好坏判断主要是对功率模块内的续流二极管的判断。对于IGBT模块还需判断在有触发电压的情况下能否正常导通和关断。
将数字万用表拨到二极管测试档,测试IGBT模块cl原el、c2原e2 之间以及栅极G 与el、e2 之间正反向二极管特性来判断IGBT模块是否完好。
35 IGBT 的驱动电路有什么特点?
答:驱动电路的作用是将微处理器输出的脉冲进行功率放大,以驱动IGBT,保证IGBT的可靠工作。驱动电路起着至关重要的作用,IGBT 驱动电路有以下基本特点:
(1)提供适当的正向和反向输出电压,使IGBT可靠的开通和关断。
(2)提供足够大的瞬态功率或瞬时电流,使IGBT能迅速建立栅控电场而导通。
(3)具有尽可能小的输入输出延迟时间,以提高工作效率。
(4)具有足够高的输入输出电气隔离性能,使信号电路与栅极驱动电路绝缘。
(5)具有灵敏的过流保护能力。
36 以IGBT为逆变管的变频器的特点?
答:以IGBT为逆变管的变频器的逆变电路与GTR 等其他逆变电路基本相同,但IGBT 逆变电路具有以下特点:
(1)载波频率高。大多数变频器的载波频率可在(3耀15 kHz)的范围内任意可调。载波频率越高,电流的谐波成分越小。
(2)功耗减小。由于IGBT的驱动电路取用电流极小,几乎不消耗功率。而GTR基极回路取用电流常常是安培级的,消耗功率不可小视。
37 电解电容器的寿命有多长?
答:电解电容的使用寿命与环境温度有关,日本安川公司电容器的寿命与环境温度的关系如图15 所示。从图中知,如果周围温度在30益以下,电解电容的使用寿命可长达10 年以上;而当周围温度为50益时,使用寿命只有2.5 年。
38 频率精度和频率分辨率有什么区别?
答: 频率精度是指变频器输出频率的准确程度,即变频器的实际输出频率与给定频率之间的误差。通常用最高频率(由用户设定)的百分数来表示。例如,频率精度为 0.01%,用户设定的最高频率是50 Hz。则输出频率的误差吟f 为吟f越50伊0.01%越0.005 Hz,假设给定频率为40 Hz,则实际输出频率在39.995耀40.005 Hz 之间。
而频率分辨率则是指频率变化的步长,如0.01 Hz,它与频率控制器的精度有关。如频率控制器的寄存器的字长为10 位,最高频率为50 Hz,则频率分辨率为0.05 Hz,如频率控制器的寄存器的字长为14 位,最高频率为50 Hz,则频率分辨率为0.003 Hz。
39 和滤波电容器并联的电阻的作用?
答:目前,电解电容器耐压只能做到450 V。
而三相380 V的电源电压经全波整流后,直流电压的峰值为537 V,平均值也有513 V。因此,滤波电容器只能由2 个(或2 组)电解电容串联而成。
为 了增大电容量,改善滤波效果,变频器内总是先将若干个电解电容器并联成一组,然后再将2 组或3 组电容器串联起来,如图16所示。由于每个电容器的电容量不可能绝对相同,尤其是电解电容器,其电容量的离散性比较大,若干个并联以后,几组电容器的电容 量之间的差异是比较明显的。那么串联以后,2个电容器组上的电压分配将是不均衡的,这将导致两组电容器使用寿命的不一致,解决电压不均衡的方法,便是在两 个电容器组的两端分别并联电阻值相等的均压电阻RC1 和RC2,原理如下:
40 失速防止功能是什么意思?
答:如果给定的加速时间过短,变频器的输出频率变化远远超过转速(电角频率)的变化,变频器将因过电流而跳闸,运转停止,这就叫作失速。
为了防止失速使电机继续运转,就要检出电流的大小进行频率控制。当加速电流过大时适当放慢加速速率或停止加速。减速时也是如此。两者结合起来就是失速防止功能。
41 什么是再生制动?如何能得到更大的制动力?
答: 变频器驱动的电动机在运转过程中,当需要减速运行时,则需要降低指令频率,气隙磁场旋转速度将降低,而电动机转子由于惯性,速度变化不大,异步电动机将由 电动状态变为发电状态,气隙磁场具有制动作用,转子动能将反馈给变频器,这就叫作再生(电气)制动。从电机再生出来的能量积在变频器的滤波电容器中,提高 电容器的容量和耐压水平可以取得更大的制动力。或整流部件采用可控整流,使得回馈能量能够反馈到电网。
42 高压变频器输出电压波形与低压变频器输出电压波形有何区别?
答:高压变频器由多个功率单元串联而成,每个功率单元输出的是脉冲波形,通过载波移相控制,使得功率单元串联后的波形为多电平,非常接近正弦波,低压变频器的输出波形是和单个功率单元波形相近的脉冲波(每个功率单元相当于一个低压单相变频器)。
43 为什么变频器的输入电流总是小于输出电流?
答:1)变频器输入电压为额定电压,变频器的输出电压一般小于额定电压;2)变频器的功率因数一般跃0.95,而电机的功率因数一般约0.85。所以使得变频器的输入电流总是小于输出电流
44 为什么变频器上电时会有冲击电流?
答:1)隔离变压器在上电的时候会有一个冲击电流。2)变频器功率单元电解电容在上电的时候也有一个冲击电流。因为电容器上的电压不能突变,所以电流必然突变。所以变频器若较长时间不用,第一次上电时,最好缓慢升压上电或通过限流电阻上电。
45 为什么变频启动能减小启动电流?
答:电动机从较低转速升至较高转速的过程称为加速过程,加速过程的极限状态便是电动机的启动。
1)工频启动的特点所谓工频启动,是指电动机直接接上工频电源时的直接启动。众所周知,工频启动存在的主要问题有:
(1) 启动电流大。因为电动机直接接上工频电源,旋转磁场即以额定同步转速旋转,而电动机转子尚处于静止状态,转子绕组与旋转磁场的相对速度很高,故感应电动势 和感应电流都很大,其定子电流可达额定电流的4耀7 倍。当电动机的容量较大时,其启动电流将对电网产生巨大的冲击。
(2)启动过程冲击大。由于电机一直由工频拖动,拖动系统的加速过程将很快,对生产机械的冲击也很大,会使生产机械的使用寿命受到影响。
2)变频启动的特点采用变频调速的启动过程的特点有:
(1)启动电流小。因为频率是从最低频率起按预置的加速时间逐渐上升的,在启动瞬间,变频器的输出频率很低,旋转磁场的转速以及转子绕组与旋转磁场的相对速度也都很低,故启动电流很小,一般可控制在额定电流以下。
(2)启动过程的冲击小。整个启动过程同步旋转磁场速度平缓上升,加速过程将能保持平稳,减小了对生产机械的冲击。
46 变频启动和软启动器启动的区别?
答:1)启动转矩不同。
(1)软启动器的启动方式,实际上就是无级降压启动。异步电动机在改变电源电压时,其机械特性的临界转差是不变的,但临界转矩减小较多。因此,在低压启动时,启动转矩将大幅减小,如图17(a)所示。
(2)变频调速低频启动时,因变频器有各种补偿功能,电动机的机械特性将大为改善,可以保证有较大的启动转矩,如图17(b)所示。
2)启动过程不同。
(1)软启动器虽然可以减小启动电流,但难以控制电动机启动时间的长短。
上一篇:单相电机变频调速技术的探讨