与二极管钳位型或飞跨电容器型逆变器比较时,新研制逆变器具有较少的元件数,因它无需钳位二极管和平衡电容器。而且,新研制逆变器在模块化电路配置和包装组件时很理想。
2.开关损耗和变压器损耗的比较
实际上可控制的开关器件,如IGBT和MOSFET(金属氧化物半导体场效应管)作为典型,都具有几纳秒(ns)的接通与断开的延迟。当接通和断开器件时,这些延迟会产生功率损耗。在逆变器中的开关损耗,与开关频率、负载电流和调制率成比例。当功率因数为1、输出恒功率10KW时,新研制逆变器其开关频率为50Hz,开关电流约为40A。如假定开关器件为FGH40N60SFD、500V、40A场阻断(fiELD stop)结构的IGBT,则在上述的条件下开关的损耗约为0.99W。当其操作在功率因数为1时,新研制逆变器的12个开关是在零电流下接通和断开的。而在基于PWM的多电平逆变器内,相同条件下当开关频率为1KHz时,其开关损-耗约19.8W。
从表4看到,新研制逆变器在功率因数为1时,因为开关频率低,且不用变压器,故具有最高的频率。
变压器有其本身的损耗,例如线圈的电阻、磁滞和涡流,杂散损耗和机械损耗。为将光伏系统与电网连接,一个PWM逆变器需要约 12KVA的变压器。12kVA变压器的效率,在额定条件下输出纯正弦电流时为98%。在额定工况的涡流损耗假定为总损耗的15%,而在1KHz开关频率下涡流损耗系数为2.53.基于PWM级联变压器型逆变器工作在1KHz开关频率下,当输出10kW功率时,其总的变压器损耗约为275W 。
三、模拟试验与结果
1.系统描述
本研究利用了基于图1所示新研制逆变器的10KW、230V离网光伏系统。该系统的参数列于表5(某些参数的标注见图1)。为观察新逆变器的参数及其控制,利用了PACAD/EMTDC软件对此系统进行模拟。
2.稳态运行下逆变器的输出电压
当系统运行于功率因数为1和0.95(离网装置中期望的典型滞后功率因数)时,通过模拟试验获得了输出电压波形及其频谱。在两种情况下输出负载均为10KW。如图6所示两种情况下逆变器的输出电压很接近正弦波形,当运行在1和0.95的功率因数时,逆变器输出电压的总谐波失真(THD)分别为4.9%和5.6%。
3.恒定辐照度下充电状态(SOC)的平衡
为了观察在不同辐照度条件下的SOC平衡技术性能,在光伏模块1-6不同的辐照模式下,对PV系统进行了模拟。表6列出了每一光伏模块上的辐照度。而图8表示模拟的结果。即使每一蓄电池的SOC稍有偏差,它们也几乎是相同的。
5.在小负荷下的系统性能
最后,了解一下小负荷下的系统性能。在t=100s,光伏系统的输出功率从10KW降到2KW,观察所有各个蓄电池的SOC。如图9所示,从0到100s光伏模块和蓄电池都供电,但当输出负载小时,PV模块充电蓄电池以提高SOC。
四、结论
本文介绍了采用13电平级联逆变器而无变压器的离网型光伏系统。并将各种多电平功率逆变器与新研制带蓄电池储能的光伏系统逆变器进行了比较对照。新研制级联逆变器具有低的功率损耗,简单的开关技术,可实现模块化及简易的充电平衡方法。
根据提出的这一开关技术,能平衡所有蓄电池的SOC,其有效性已通过模拟得到证实。模拟实验说明,新研制的控制器不仅平衡每一蓄电池的SOC,而且降低了输出的THD,在无任何谐波滤波情况下,THD<6%。
原文出处:(斯里兰卡)kapila Bandara,(英国)Tracy Sweet,Janke Ekanayake,
PhotovoltaIC applications for off-grid eleCTRification using novel multi-level inverter technology with energy storage,《Renewable Energy》37 (2012).p82-88.