由于缺乏灵活性,使得集成系统很难竞争过MCU+PWM的充电管理方案。通常IC设计公司和半导体制造商通过提供不同的预置电压、可选的或者可编程的电流(预处理电流、充电电流和结束电流)以及采用外部电阻和电容编程某些参数来解决这些问题。通常,充电管理IC采用电池制造商所建议的CC-CV充电算法。安全定时器也是可编程的,或是可选择的。当安全定时器在充电结束之前溢出时,系统会增加一个故障标志或者关断。安全定时器可用来防止锂离子电池由于过充电而发生危险,并能识别'死'电池。例如对一个性能良好的锂离子电池来说,在加上一个适当的电压后,它会在较短的时间内进入恒流充电状态。如果在预处理期间安全定时器发生溢出,电池很可能需要更换了。
图5:全集成独立充电器IC的典型充电曲线。
图5给出了一个典型的独立线性锂离子电池充电管理控制器的完整充电过程。所需的总充电时间将根据结束充电选项的不同而不同。在每个充电过程的开始,如果内部功耗过高,热反馈将调节器件的温度。当器件温度低于最大值时,恒流模式将恢复到最大编程值,从而提高充电器的可靠性和安全性。这种作法的代价是整个充电周期略有增加。比较图3和图5,热调节功能实际上只是使整个充电过程延长了大约7分钟,这在绝大多数的应用中是微不足道的,因为整个充电周期约为3小时。
本文小结
全集成的IC可以帮助设计师快速且低成本地实现电池充电功能。但是,这些标准的器件无法满足所有便携式器件设计和设计师的需求。产品设计师通常很难找到能够满足所有设计要求的电池充电解决方案。电池充电管理控制器IC通常是针对一般性应用设计的,而并非针对特殊应用而设计。一些制造商试图提供单芯片多化学材料的解决方案,但与这些方案有关的内置算法要么太昂贵,要么用户不友好。对于高端电池充电管理系统或者电池化学材料可能随着产品的改版而改变的设计来说,基于MCU+PWM控制器的系统是理想的解决方案。
表1:MCU+PWM控制器与独立充电器IC的比较。
本文关键字:电池 其他电源技术,电源动力技术 - 其他电源技术