开关电源多模块并联系统发挥了分布式电源供电大容量、高效率和低成本等优势,同时提高了整个电源系统的可靠性,实现平均分配各模块负载电流的并联均流技术是开关电源模块并联的关键技术之一。常用DC/DC并联均流技术有无源法与有源法,有源法依据输出电压调节方式和均流母线产生方式不同而有多种组合控制方法。对目前电源并联均流技术原理、主要均流方法进行分析,综述无主模块均流控制和无均流线控制等新型均流策略,指出并联均流技术朝着智能化、数字化方向发展的趋势。
随着科技的迅猛发展,大量电子设备需要安全、可靠、大容量的电源供电,单电源难以实现这方面的需求。分布式电源系统具有大容量、高效率、高可靠性等优点[1],其广泛采用多模块并联方式,但模块间因为控制参数不同,且各模块输出是电压源性质,如果没有特殊的均流措施,输出电压的微小偏差会导致输出电流很大的差别,一旦某个模块过载,将造成一个或多个功率器件热应力过大,从而降低系统的稳定性。
为了获得并联电源的理想特性,已经提出一系列并联均流方法[2-4],现有的DC/DC并联均流技术具体可分为两大方法[1],即无源法和有源法。无源法又叫输出阻抗法,有源法由控制方法和均流母线形成方法组合而成,其控制方法主要用来调节各并联电源的输出电压,有4 种,即改变输出电压基准或反馈,改变电流内环的给定或反馈,同时改变输出电压和电流基准以及采用外部闭环控制。这4 种方法对应有4 种均流控制方法,即外环调节、内环调节、双环调节和外控制器法。从均流母线产生方法来看,有源法可分为两大类,即平均法和主从法(包括指定主从法和最大电流自动均流法)。另有结合运用了热学的热应力自动均流法及其他均流方法。文中将从并联均流技术和其控制方法等方面,结合其发展现状和趋势对现有文献进行综述。
1 无源法
无源法通过调节电源模块输出阻抗来达到均流目标。常用无源法控制框图如图1 所示。电阻Rs 检测到的电流信号经比较器后输出UI ,Uf 为反馈电压信号。
由图1 知,当某模块电流增加,Us 上升,Uc 下降,该模块输出特性曲线向下倾斜,接近其他模块外特性,输出电压随之下降,而其他模块电流增大,实现近似均流。
另一种是在负载前串入一定电阻值,为减小耗能,通常串联热敏电阻来实现近似均流,因其阻值可随电流变化而变化,同样可达到改变输出阻抗的目的。
输出阻抗法是最简单的均流方法,属于开环控制。在小电流时电流分配特性差,随着电流的增大,分配特性会有所改善,但仍不平衡,且以牺牲电压调整率来个别调整每个模块达到均流。此法可应用在小功率、均流精度要求较高的场合,对于额定功率不同的并联模块,难以实现均流。
2 有源法
2.1 控制方法
2.1.1 外环调节控制法
外环调节控制法框图如图2(a)所示,图中Rs 为与负载相串联的检测电阻;Uo , Io分别为输出电压和输出电流;Uin 为输入电压。该方法将各模块输出端电流与均流信号作差进行误差放大,生成均流环信号,再与标准电压相加得到的信号与输出电压采样值比较后,产生的控制信号送入脉宽调制器。该方法中输出电压采样值及电压调节器都是独立的,即使某个模块不能工作也不会影响全局,所以其控制方式和系统结构配置较灵活,简化了系统的扩展和维护工作。缺点是:均流环带宽比较窄,远在电压环带宽之下,影响系统的动态均流特性;由均流环与电压环串联形成三环系统,设计困难[5],容易引起系统的不稳定,一般不采取此种方法。
2.1.2 内环调节控制法
如图2(b)所示的内环调节控制法框图,该方法将输出电压与标准参考电压比较放大后,经过均流电阻与采样电流值进行比较放大后产生控制信号,送入电流模式控制或PWM控制环节,进而调节输出电压,实现各模块间的均流。该方式由于均流误差信号不经过电压环调节器,故与外环调节相比,响应更快,具有稳定性好、均流环带宽等优点。缺点是:电压环的带宽比较宽,造成均流母线上会出现丰富的高频信号;均流母线抗干扰较差,对噪声敏感,系统容易不稳定;均流母线为电压误差信号,电压环的动态响应影响均流性能,模块化特性差。
2.1.3 双环调节控制法
单母线结构的双环调节控制法框图如图2(c)所示。此方法综合了外环与内环调节的优点,可使均流达到一种迅速、且具有好的抗干扰性能的效果,但由于一般情况下均流环输出的信号只是控制信号的一小部分,故存在输出电压不可调的内在缺陷,均流环难以纠正由电压不平衡引起的电流不均衡现象。
在此基础上文献[5]中分析了改进式三环并行控制策略,将其应用于并联Boost 变换器均流控制。针对不对称半桥DC-DC变换器,文献[6]中提出将“改进式最大电流均流法”的三环控制原理作为均流方案,设计出其并联运行的均流控制电路。利用同样的方法文献[7]中对3 台48 V/12 V/10 A的Buck 样机进行并联实验,证明了多环路设计的正确性和改进式自主均流法的优越性。
2.1.4 外加控制器法
每一个模块电源控制部分都是由1 个均流控制器完成,通过检测每个单元的输出电流产生反馈信号来调节每个模块的电流,从而达到各单元平均分配输出电流的目的。这种控制方法均流效果好,但每个单元拥有1 个均流控制器,将使整个并联电源系统的动态过程分析更加复杂。文献[8]中分析了“最小主从模式脉宽调制”和“平均模式滞环”2 种均流控制器,采用这2 种均流控制器的系统中,均流接口电路均流效果均良好。
2.2 均流母线形成方法
2.2.1 平均电流法
平均电流法是指均流环参考电压为各模块电流的平均值,其值反映在均流母线b 的电压上,如图3 所示。R 为均流电阻,均流母线电压与每个电源模块的采样电压信号比较后,通过调节放大器输出1 个误差电压,从而调节单元模块的输出电流,达到均流目的。若R 上不为零时,表明模块间电流分配不均衡,需通过均流环调节来达到均流目的,若R 上的电压为零,表明这时已实现均流。
平均电流法可以精确地实现均流,但具体应用时,也存在着缺点,例如当均流母线发生短路或当其中某个模块不能工作时,母线电压下降,促使各模块电压下调,甚至下调至其下限值,致使电源系统发生故障[9].
文献[5]中改进了基于平均电流模式的自动均流法,并将其应用于并联Boost 变换器均流控制中。文献[10]
中介绍了1 种利用均流线实现平均电流模式控制,由3 个Boost 电路模块构成的并联系统验证了此均流方法的有效性。
2.2.2 指定主从法
指定主从法不存在均流环,而是在并联的n 个变换器中,指定其中一个为主模块,其余为从模块。从模块的电压误差信号均为主模块的电压误差信号,利用电流型控制实现均流。如图4 所示,主模块的电流基准信号由其基准电压Uref 和反馈输出电压Uf 作差得到,此信号放大后与主模块的反馈电流比较,产生电压控制信号。从模块的电压误差放大器以跟随器的形式接入电路中,主模块的电压误差信号输入到各从模块电压放大器输入端,因模块输出电流与误差电压成正比,所以不管负载电流如何变化,各模块最终电流相等。
指定主从法均流精度很高,存在的最大问题是主模块的不可替代性,若其出现故障,整个系统将完全瘫痪。
此外,系统在统一的误差电压控制下,任何非负载电流引起的误差电压的变化都会引起各并联电源模块电流再次分配,从而降低均流精度。在实际应用中,针对某特种车辆高功率密度、高可靠性、低输出纹波及高动态特性的要求,文献[11] 中介绍了1 种采用主从均流控制的并- 并型推挽组合变换器,基于此均流方法,Rajagopalan 等提出1种五差异环增益法[12],分析了系统稳定性与动态响应性能,且介绍了均流环设计方法。
2.2.3 最大电流自动均流法
最大电流自动均流法与指定主从法不同的是主模块的指定方式不同。输出电流最大的模块自动成为主模块,其余的模块为从模块,其电压误差依次被整定。此法与平均电流法的区别仅在于将均流电阻用二极管( a 点接二极管阳极,b 点接阴极)代替,二极管的单向导电性使得在电流最大模块上的二极管导通,a 点通过二极管与均流母线相连,该模块便自动成为主模块,这时Ub 等于UIj ,各模块的UI 与Ub 比较,通过调节放大器调整基准电压自动实现均流。最大电流自动均流法唯一的缺点是主模块因二极管的压降而使均流有误差,但此方法应用最为广泛。张强等[13]将最大电流法应用于大功率直流电源模块并联系统中,实验验证此方法具有较好的均流精度。文献[14]中介绍了1 种建立在此均流法上兼有支路限流功能的控制方案,即限流最大电流均流法,实验中输出电压稳定、充电支路限流、总电流均流能够共同实现。文献[15]中将此方法应用于移相全桥ZVS DC/DC变换器,可实现良好均流。
本文关键字:技术 调稳压-升降压技术,电源动力技术 - 调稳压-升降压技术
上一篇:线性稳压器的补偿技术的设计应用