3 测试结果
所设计的RFID标签芯片基于cHARTered0135Lm2P4M、低阈值CMOS工艺流片,芯片尺寸1026Lm×1796Lm,图8为芯片的显微照片。实际使用过程中,芯片仅有两个引脚与天线相连,图中所显示的其余引脚均为测试所用,连接对应的模拟或数字信号。
倍压电路的输出电平是决定RFID芯片工作性能的重要指标,采用本阻抗匹配电路的芯片在输入交流电平仅为300mV时,输出直流电平可达1147V,完全满足芯片正常工作所需电平要求。1800026C中规定的RFID工作频带为860~960MHz,与我国的规定[11]在920~925MHz频段相重合,因此所设计的RFID标签工作在923MHz频带。
使用ImPINj公司的speedway读写器,设置发送功率为2WERP,标签天线增益115dBi,在自由空间中进行测试。使用安捷伦1682A逻辑分析仪测试信号波形如图9,图中“clk-240k”为系统工作时钟,频率为240kHz;“din-dump”为解调输出信号;“d-out”为调制输出信号。测试表明,采用该阻抗匹配网络的标签在和读写器通信的过程中,误码率低于10-4,标签的一次识别更为准确。
4 结论
提出了一种符合ISO1800026C标准的无源RFID标签的低成本的阻抗匹配网络。电路结构简单,在读写器、标签天线和芯片之间实现了功率传输的最大化。采用该阻抗匹配方法的标签芯片已通过chartered0135LmCMOS工艺流片验证。理论分析和实测结果都表明,该方法有效的改善了芯片性能,提高了读写器对标签识别的准确率,标签满足系统设计要求。