您当前的位置:五五电子网电子知识plc技术PLC入门siemens plc 寻址详解 正文
siemens plc 寻址详解

siemens plc 寻址详解

点击数:7430 次   录入时间:03-04 11:35:59   整理:http://www.55dianzi.com   PLC入门

其0-2bit,指定bit位,3-18bit指定byte字节。其第31bit固定为0。

AR:

0000 0000 0000 0BBB BBBB BBBB BBBB BXXX

这样规定,就意味着AR的取值只能是:0.0 ——65535.7

例如:当AR=D4(hex)=0000 0000 0000 0000 0000 0000 1101 0100(b),实际上就是等于26.4。

而在区域间寄存器间接寻址中,由于要寻址的区域也要在AR中指定,显然这时的AR中内容肯定于寄存器区域内间接寻址时,对AR内容的要求,或者说规定不同。

AR:

1000 0YYY 0000 0BBB BBBB BBBB BBBB BXXX

比较一下两种格式的不同,我们发现,这里的第31bit被固定为1,同时,第24、25、26位有了可以取值的范围。聪明的你,肯定可以联想到,这是用于指定存储区域的。对,bit24-26的取值确定了要寻址的区域,它的取值是这样定义的:

区域标识符

26、25、24位

P(外部输入输出)

000

I(输入映像区)

001

Q(输出映像区)

010

M(位存储区)

011

DB(数据块)

100

DI(背景数据块)

101

L(暂存数据区,也叫局域数据)

111

如果我们把这样的AR内容,用HEX表示的话,那么就有:

当是对P区域寻址时,AR=800xxxxx

当是对I区域寻址时,AR=810xxxxx

当是对Q区域寻址时,AR=820xxxxx

当是对M区域寻址时,AR=830xxxxx

当是对DB区域寻址时,AR=840xxxxx

当是对DI区域寻址时,AR=850xxxxx

当是对L区域寻址时,AR=870xxxxx

经过列举,我们有了初步的结论:如果AR中的内容是8开头,那么就一定是区域间寻址;如果要在DB区中进行寻址,只需在8后面跟上一个40。84000000-840FFFFF指明了要寻址的范围是:

DB区的0.0——65535.7。

例如:当AR=840000D4(hex)=1000 0100 0000 0000 0000 0000 1101 0100(b),实际上就是等于DBX26.4。

我们看到,在寄存器寻址指针 [AR1/2,P#byte.bit] 这种结构中,P#byte.bit又是什么呢?

【P#指针】

P#中的P是Pointer,是个32位的直接指针。所谓的直接,是指P#中的#后面所跟的数值或者存储单元,是P直接给定的。这样P#XXX这种指针,就可以被用来在指令寻址中,作为一个“常数”来对待,这个“常数”可以包含或不包含存储区域。例如:

● L P#Q1.0 //把Q1.0这个指针存入ACC1,此时ACC1的内容=82000008(hex)=Q1.0

★ L P#1.0 //把1.0这个指针存入ACC1,此时ACC1的内容=00000008(hex)=1.0

● L P#MB100 //错误!必须按照byte.bit结构给定指针。

● L P#M100.0 //把M100.0这个指针存入ACC1,此时ACC1的内容=83000320(hex)=M100.0

● L P#DB100.DBX26.4 //错误!DBX已经提供了存储区域,不能重复指定。

● L P#DBX26.4 //把DBX26.4这个指针存入ACC1,此时ACC1的内容=840000D4(hex)=DBX26.4

我们发现,当对P#只是指定数值时,累加器中的值和区域内寻址指针规定的格式相同(也和存储器间接寻址双字指针格式相同);而当对P#指定带有存储区域时,累加器中的内容和区域间寻址指针内容完全相同。事实上,把什么样的值传给AR,就决定了是以什么样的方式来进行寄存器间接寻址。在实际应用中,我们正是利用P#的这种特点,根据不同的需要,指定P#指针,然后,再传递给AR,以确定最终的寻址方式。

在寄存器寻址中,P#XXX作为寄存器AR指针的偏移量,用来和AR指针进行相加运算,运算的结果,才是指令真正要操作的确切地址数值单元!

无论是区域内还是区域间寻址,地址所在的存储区域都有了指定,因此,这里的P#XXX

只能指定纯粹的数值,如上面例子中的★。

【指针偏移运算法则】

在寄存器寻址指针 [AR1/2,P#byte.bit] 这种结构中,P#byte.bit如何参与运算,得出最终的地址呢?

运算的法则是:AR1和P#中的数值,按照BYTE位和BIT位分类相加。BIT位相加按八进制规则运算,而BYTE位相加,则按照十进制规则运算。

例如:寄存器寻址指针是:[AR1,P#2.6],我们分AR1=26.4和DBX26.4两种情况来分析。

当AR1等于26.4,

AR1:26.2

+ P#: 2.6

---------------------------

= 29.7 这是区域内寄存器间接寻址的最终确切地址数值单元

当AR1等于DBX26.4,

AR1:DBX26.2

+ P#: 2.6

---------------------------

= DBX29.7 这是区域间寄存器间接寻址的最终确切地址数值单元

= 29.7 这是区域内寄存器间接寻址的最终确切地址数值单元

当AR1等于DBX26.4,

AR1:DBX26.2

+ P#: 2.6

---------------------------

= DBX29.7 这是区域间寄存器间接寻址的最终确切地址数值单元

【AR的地址数据赋值】

通过前面的介绍,我们知道,要正确运用寄存器寻址,最重要的是对寄存器AR的赋值。同样,区分是区域内还是区域间寻址,也是看AR中的赋值。

对AR的赋值通常有下面的几个方法:

1、直接赋值法

例如:

L DW#16#83000320

LAR1

可以用16进制、整数或者二进制直接给值,但必须确保是32位数据。经过赋值的AR1中既存储了地址数值,也指定了存储区域,因此这时的寄存器寻址方式肯定是区域间寻址。

2、间接赋值法

例如:

L [MD100]

LAR1

可以用存储器间接寻址指针给定AR1内容。具体内容存储在MD100中。

3、指针赋值法

例如:

LAR1 P#26.2

使用P#这个32位“常数”指针赋值AR。

总之,无论使用哪种赋值方式,由于AR存储的数据格式有明确的规定,因此,都要在赋值前,确认所赋的值是否符合寻址规范。

详解西门子间接寻址<3>

使用间接寻址的主要目的,是使指令的执行结果有动态的变化,简化程序是第一目的,在某些情况下,这样的寻址方式是必须的,比如对某存储区域数据遍历。此外,间接寻址,还可以使程序更具柔性,换句话说,可以标准化。

下面通过实例应用来分析如何灵活运用这些寻址方式,在实例分析过程中,将对前面帖

子中的笔误、错误和遗漏做纠正和补充。

【存储器间接寻址应用实例】

我们先看一段示例程序:

L 100

T MW 100 // 将16位整数100传入MW100

L DW#16#8 // 加载双字16进制数8,当把它用作双字指针时,按照BYTE.BIT结构,

结果演变过程就是:8H=1000B=1.0

T MD 2 // MD2=8H

OPN DB [MW 100] // OPN DB100

L DBW [MD 2] // L DB100.DBW1

T MW[MD2] // T MW1

A DBX [MD 2] // A DBX1.0

= M [MD 2] // =M1.0

上一页  [1] [2] [3] [4]  下一页


本文关键字:siemens  PLC入门plc技术 - PLC入门

上一篇:什么是PLC冗余