2、供热模式下热媒水泵系统的闭环控制
该模式是在冬季采暖模式下热媒水循环水泵系统的控制方案。热源为厂区锅炉热交换产生;同制冷模式控制方案一样,在保证最末端设备热媒水流量供给的情况下,确定一个热媒水泵变频器工作的最小工作频率,将其设定为下限频率并锁定,变频热媒水水泵的频率调节是通过安装在热水系统回水主管上的温度传感器检测回水温度,再经由温度控制器设定的温度来控制变频器的频率增减。同理,循环水回水温度低于设定温度时频率无极上调最大达到50HZ。反之频率无极下调最低达到最低运行频率。
(四)冷却水系统的闭环控制。目前,在冷却水系统进行改造的方案最为常见,节电效果也较为显著。该方案同样在保证冷却塔有一定的冷却水流出的情况下,通过控制变频器的输出频率来调节冷却水流量,当中中央空调冷却水出水温度低时,减少冷却水流量;当中中央空调冷却水出水温度高时,加大冷却水流量,从而达到在保证中中央空调机组正常工作的前提下达到节能增效的目的。
现有的控制方式大都先确定一个冷却泵变频器工作的最小工作频率,将其设定为下限频率并锁定,变频冷却水泵的频率是取冷却回水温度信号来调节,当回水温度大于设定值时,频率无极上调,当回水温度小于设定值时,频率无极下调,同时当冷却水回水温度高于设定值时,频率优先无极上调最大至50HZ,当冷却水回水温度低于设定值时频率优先无极下调达到最低运行频率。另外配合室外冷却塔风机运行,当冷却水回水温度低于30℃时停止,大于35℃开启;应与冷却水循环水泵变频控制柜一同设计。
(五)变频风机的静压PID控制方式。送风机的空气处理装置是采用冷热水来调节空气温度的热交换器。大型商场、人员较集中且面积较大的场所常使用此类装置。图2给出了一个空气处理装置中送风机的静压控制系统。如果送风干管不只一条,则需设置用静压要求最低的传感器控制风机。风管静压的设定值(主送风管道末端最后一个支管前的静压)一般取250~375Pa之间。若各通风口挡板开启数增加,则静压值比给定值低,控制风机转速增加,加大送风量;若各通风口挡板开启数减少,静压值上升,控制风机转速下降,送风量减少,静压又降低,从而形成了一个静压控制的PID闭环。
(六)冷却塔散热风扇的改造。冷却塔的散热风扇主要是用来加快冷却水在喷淋过程中的散热速度。对于风扇的控制可采用回水温度控制的方式,当循环冷却水泵运行在变频控制状态,冷却回水温度大于35℃时,冷却塔风机自动开启运行,当冷却回水温度小于30℃时,冷却塔风机自动停止运行,从而避免为满足冷却塔出水水温≤32℃,必须使风机处在工频状态下运行,而造成水温过低,形成不必要的能源浪费。
(七)纯水站3KW循环泵改造。涉及到3个3KW循环水泵的变频改造,拟采用循环水出水恒压变频控制,或采用分时段定频率运行方式进行改造,控制柜设计3KW单泵控制柜各一台,恒出水压力控制。
(八)动物房三台变风量空调机组。按照静压传感器恒压力变频运行以达到节能效果。
(九)设备的选型,主要包括:
1、变频器
变频器是此次节能改造的重要设备,设备的稳定性和操作的灵活性简便是该系统可靠、安全的根本,同时结合操作人员的掌握程度,我们选用了日本三垦、富士产品。
2、低压电器
低压电器的主要元器件我们选用了施耐德产品,以提高控制设备的可靠性,其他电器件选用国内知名品牌。
(1)整个改造系统我们将保留原系统控制设备,以确保改造前后系统运行的可靠性和延续性。
(2)根据对改造设备安装现场的考察,我们采用了一个控制点一台设备的设计方案,确保单一系统故障时不影响其他设备的正常运行操作。
(3)传感器选用了美国的KMC产品。
五、结语
该系统已于2007年10月正式投入使用,从运行效果看,完全能满足设计需要,节能效果平均达到15%~20%;单从节能收益分析,三年内即可收回全部投资,设备运行稳定性和自动化程度明显提高,延长了设备使用寿命,符合国家“十一五”规划的节能减排、节能降耗的要求,有着广泛的社会效益。目前中央空调系统大都采用水源热泵空调系统,虽然达到利用地热恒温水达到降耗目的,但由于自动化系统大都采用电动风阀、电动阀门来调节温度、湿度以及新风的补给量,风机和水泵一直运行在工频状态,因此水系统和风系统具有广泛的节能改造空间,通过变频改造,以达到系统全部节能变频运行的目的,最大限度使系统运行在最佳节能状态。
参考文献:
1.李林,《智能大厦系统工程》,北京:电子工业出版社,1998
2.邹根南,《制冷装置及其自动化》,北京:机械工业出版社,1987
3.张祉佑,《制冷原理与设备》,北京:机械工业出版社,1988
4.《美国KMC楼控产品说明书》
上一页 [1] [2]
本文关键字:节能改造 中央空调 变频改造,变频技术 - 变频改造