1 引言
变频器过压故障保护是变频器中间直流电压达到危险程度后采取的保护措施,这是电压型交-直-交变频器设计上的一大缺陷,在变频器实际运行中引起此故障的原因较多,可以采取的措施也较多,在处理此类故障时要分析清楚故障原因,有针对性的采取相应的措施去处理。
2 变频器过压问题的提出
通用变频器大都为电压型交-直-交变频器,从变频器的基本结构可以知道三相交流电首先通过二极管不控整流桥得到脉动直流电,再经电解电容滤波稳压,最后经无源逆变输出电压、频率可调的交流电给电动机供电。一般而言,负载的能量可以分为动能和势能两种。动能(由负载的速度和重量确定其大小)随着物体的运动而累积,当动能减为零时,该物体就处在停止状态。图1所示为电机传动的四种运行方式,在本章中所涉及到负载的共同特点,就是要求电机不仅运行于电动状态(一、三象限),而且要运行于发电制动状态(二、四象限)。
图1 电机传动的四种运行方式
对于变频器,如果输出频率降低,电机转速将跟随频率同样降低,这时会产生制动过程,由制动产生的功率将返回到变频器侧,由于二极管不控整流器能量传输不可逆,产生的再生电能传输到直流侧滤波电容上,产生泵升电压;而以gtr、igbt为代表的全控型器件耐压较低,过高的泵升电压有可能损坏开关器件、电解电容,甚至会破坏电机的绝缘,从而则威胁到系统安全工作,这就限制了通用变频器的应用范围。因此,必须将这些功率消耗掉,如可以用电阻发热消耗。在用于提升类负载时,如负载下降,能量(势能)也要返回到变频器(或电源)侧,这种操作方法被称作“再生制动”。
如果在负载减速期间或者长期被倒拖时,由电机侧流到变频器直流母线侧产生的功率如果不通过热消耗的方法消耗掉,而是把能量返回送到变频器电源侧或者通过直流母线并联的方式由其他电动状态的电机消耗的方法叫做回馈制动。显然,如需要将能量直接返回到电源侧还需要一种特殊的装置,即能量回馈单元。
总而言之,为了改善制动能力,不能单纯期望靠增加变频器的容量来解决问题,而必须采用处理再生能量的方法:电阻能耗制动和回馈制动。
从上可以知道,变频器过压主要是指其中间直流回路过压,而中间直流回路过压主要危害有以下几点:
(1)引起电动机磁路饱和。对于电动机来说,电压过高必然使电机铁芯磁通增加,可能导致磁路饱和,励磁电流过大,从面引起电机温升过高。
(2)损害电动机绝缘。中间直流回路电压升高后,变频器输出电压的脉冲幅度过大,对电机绝缘寿命有很大的影响。
(3)对中间直流回路滤波电容器寿命有直接影响,严重时会引起电容器爆裂。因而变频器厂家一般将中间直流回路过压值限定在dc800v左右,一旦其电压超过限定值,变频器将按限定要求跳闸保护。
正是基于过压的严重危害性,在以下变频器应用场合,用户必须考虑配套使用制动方式:电机拖动大惯量负载(如离心机、龙门刨、巷道车、行车的大小车等)并要求急剧减速或停车;电机拖动位能负载(如电梯,起重机,矿井提升机等);电机经常处于被拖动状态(如离心机副机、造纸机导纸辊电机、化纤机械牵伸机等)。
3 产生变频器过压的原因
一般能引起中间直流回路过压的原因主要来自以下两个方面:
(1)来自电源输入侧的过压
正常情况下的电源电压为380v,允许误差为-5%~+10%,经三相桥式全波整流后中间直流的峰值为591v,个别情况下电源线电压达到450v,其峰值电压也只有636v,并不算很高,一般电源电压不会使变频器因过压跳闸。电源输入侧的过压主要是指电源侧的冲击过压,如雷电引起的过压、补偿电容在合闸或断开时形成的过压等,主要特点是电压变化率dv/dt和幅值都很大。
(2)来自负载侧的过压
主要是指由于某种原因使电动机处于再生发电状态时,即电机处于实际转速比变频频率决定的同步转速高的状态,负载的传动系统中所储存的机械能经电动机转换成电能,通过逆变器的6个续流二极管回馈到变频器的中间直流回路中。此时的逆变器处于整流状态,如果变频器中没采取消耗这些能量的措施,这些能量将会导致中间直流回路的电容器的电压上升,达到限值即行跳闸。
比如当变频器拖动大惯性负载时,其减速时间设定的比较小,在减速过程中,变频器输出频率下降的速度比较快,而负载惯性比较大,靠本身阻力减速比较慢,使负载拖动电动机的转速比变频器输出的频率所对应的转速还要高,电动机处于发电状态,而变频器没有能量处理单元或其作用有限,因而导致变频器中间直流回路电压升高,超出保护值,就会出现过压跳闸故障。
本文关键字:变频器 变频器维修,变频技术 - 变频器维修
上一篇:变频器的过压故障及排除(二)