3. 跟踪法
信号传输电路,包括信号获取(信号产生),信号处理(信号放大,转换,滤波,隔离等)以及信号执行电路,在现代电子电路中占有很大比例。这种电路的检测关键是跟踪信号的传输环节。具体应用中根据电路的种类可有信号寻迹法和信号注人法两种。
一、信号寻迹法
信号寻迹法是针对信号产生和处理电路的信号流向寻找信号踪迹的检测方法,具体检测时又可分为正向寻迹(由输人到输出顺序查找),反向寻迹(由输出到输人顺序查找)和等分寻迹三种。
正向寻迹是常用的检测方法,可以借助测试仪器(示波器、频率计、万用表等)逐级定性、定量检测信号,从而确定故障部位。图三是交流毫伏表的电路框图及检测示意图。我们用一个固定的正弦波信号加到毫伏表输人端,从衰减电路开始逐级检测各级电路,根据该级电路功能及性能可以判断该处信号是否正常,逐级观测,直到查出故障。
显然,反向寻迹检测仅仅是检测的顺序不同。
等分寻迹对于单元较多的电路是一种高效的方法。我们以某仪器时基信号产生电路为例说明这种方法。该电路由置于恒温槽中的晶体振荡器产生5MHz信号,经9级分频电路,产生测试要求的1Hz和0. OlHz信号,如图四所示。
电路共有10个单元,如果第9单元有问题,采用正向法需测试8次才能找到.等分寻迹法是将电路分为两部分,先判定故障在哪一部分,然后将有故障的部分再分为两部分检测。仍以第9单元故障为例,用等分寻迹法测1kHz信号,发现正常,判定故障在后半部分;再测1Hz信号,仍正常,可制定故障在9,10单元,第三次测0. 1Hz信号,即可确定第9单元的故障。显然等分寻迹法效率大为提高。
等分寻迹法适用多级串联结构的电路,且各级电路故障率大致相同,每次测试时间差不多的电路。对于有分支、有反馈或单元较少的电路则不适用。
二、信号注入法
对于本身不带信号产生电路或信号产生电路有故障的信号处理电路采用信号注人法是有效的检测方法。所谓信号注人,就是在信号处理电路的各级输人端输人已知的外加测试信号,通过终端指示器(例如指示仪表、扬声器、显示器等)或检测仪器来判断电路工作状态,从而找出电路故障。
各种广播电视接收设备是采用信号注人法检测的典型。图五是一个典型调频立体声收音机框图。检测时需要两种信号:鉴频器之前要求调频立体声信号,解码器之后是音频信号。通常检测收音机电路是采用反向信号注人,即先将一定频率和幅度的音频信号从AR , AL开始逐渐向前推移,通过扬声器或耳机监听声音的有无和音质及大小,从而判断电路故障。如果音频电路部分正常,就要用调频立体声信号源从G , H......依次注人,直到找出故障点。
采用信号注人法检测时要注意以下几点
(1)信号注人顺序根据具体电路可采用正向、反向或中间注人的顺序。
(2)注人信号的性质和幅度要根据电路和注人点变化,如上例收音机音频部分注人信号,越靠近扬声器需要的信号越强,同样信号注人B点可能正常,注入D点可能过强使放大器饱和失真。通常可以估测注人点工作信号作为注人信号的参考。
(3)注人信号时要选择合适接地点,防止信号源和被测电路相互影响。一般情况下可选择靠近注人点的接地点。
(4)信号与被测电路要选择合适的藕合方式,例如交流信号应串接合适电容,直流信号串接适当电阻,使信号与被测电路阻抗匹配。
(5)信号注人有时可采用简单易行的方式,如收音机检测时就可用人体感应信号作为注人信号(即手持导电体碰触相应电路部分)进行判别。同理,有时也必须注意感应信号对外加信号检测的影响。
4. 替换法
替换法是用规格性能相同的正常元器件,电路或部件,代替电路中被怀疑的相应部分,从而判断故障所在的一种检测方法,也是电路调试、检修中最常用,最有效的方法之一。
实际应用中,按替换的对象不同,可有三种方法。
1.元器件替换
元器件替换除某些电路结构较为方便外(例如带插接件的IC,开关,继电器等),一般都需拆焊,操作比较麻烦且容易损坏周边电路或印制板,因此元器件替换一般只作为其他检测方法均难判别时才采用的方法,并且尽量避免对电路板做“大手术”。例如,怀疑某两个引线元器件开路,可直接焊上一个新元件试验之;怀疑某个电容容量减小可再并上一只电容试之。
2.单元电路替换
当怀疑某一单元电路有故障时,另用一台同样型号或类型的正常电路,替换待查机器的相应单元电路,可判定此单元电路是否正常。有些电路有相同的电路若干路,例如立体声电路左右声道完全相同,可用于交叉替换试验。
当电子设备采用单元电路多板结构时替换试验是比较方便的。因此对现场维修要求较高的设备,尽可熊采用方便替换的结构,使设备维修性良好。
3.部件替换
随着集成电路和安装技术的发展,电子产品迅速向集成度更高,功能更多,体积更小的方向发展,不仅元器件级的替换试验困难,单元电路替换也越来越不方便,过去十几块甚至几十块电路的功能,现在用一块集成电路即可完成,在单位面积的印制板上可以容纳更多的电路单元。电路的检测、维修逐渐向板卡级甚至整体方向发展。特别是较为复杂的由若千独立功能件组成的系统,检测时主要采用的是部件替换方法。
部件替换试验要遵循以下三点
(1)用于替换的部件与原部件必须型号、规格一致,或者是主要性能、功能兼容的,并且能正常工作的部件。
(2)要替换的部件接口工作正常,至少电源及输人、输出口正常,不会使替换部件损坏。这一点要求在替换前分析故障现象并对接口电源作必要检测。
(3)替换要单独试验,不要一次换多个部件。
最后需要强调的是替换法虽是一种常用检测方法,但不是最佳方法,更不是首选方法。它只是在用其他方法检测的基础上对某一部分有怀疑时才选用的方法。
对于采用微处理器的系统还应注意先排除软件故障,然后才进行硬件检测和替换。
5. 比较法
有时用多种检测手段及试验方法都不能判定故障所在,并不复杂的比较法却能出奇制胜。常用的比较法有整机比较、调整比较、旁路比较及排除比较等四种方法。
1.整机比较法
整机比较法是将故障机与同一类型正常工作的机器进行比较,查找故障的方法。这种方法对缺乏资料而本身较复杂的设备,例如以微处理器为基础的产品尤为适用。
整机比较法是以检测法为基础的。对可能存在故障的电路部分进行工作点测定和波形观察,或者信号监测,比较好坏设备的差别,往往会发现问题。当然由于每台设备不可能完全一致,检测结果还要分析判断,这些常识性问题需要基本理论基础和日常工作的积累。
2.调整比较法
调整比较法是通过整机设备可调元件或改变某些现状,比较调整前后电路的变化来确定故障的一种检测方法。这种方法特别适用于放置时间较长,或经过搬运、跌落等外部条件变化引起故障的设备。
正常情况下,检测设备时不应随便变动可调部件。但因为设备受外界力作用有可能改变出厂的整定而引起故障,因而在检测时在事先做好复位标记的前提下可改变某些可调电容、电阻、电感等元件,并注意比较调整前后设备的工作状况。有时还需要触动元器件引脚、导线、接插件或者将插件拔出重新插接,或者将怀疑印制板部位重新焊接等等,注意观察和记录状态变化前后设备的工作状况,发现故障和排除故障。
运用调整比较法时最忌讳乱调乱动,而又不作标记。调整和改变现状应一步一步改变,随时比较变化前后的状态,发现调整无效或向坏的方向变化应及时恢复。
3.旁路比较法
旁路比较法是用适当容量和耐压的电容对被检测设备电路的某些部位进行旁路的比较检查方法,适用于电源干扰、寄生振荡等故障。
因为旁路比较实际是一种交流短路试验,所以一般情况下先选用一种容量较小的电容,临时跨接在有疑问的电路部位和“地”之间,观察比较故障现象的变化。如果电路向好的方向变化,可适当加大电容容量再试,直到消除故障,根据旁路的部位可以判定故障的部位。
4.排除比较法
有些组合整机或组合系统中往往有若干相同功能和结构的组件,调试中发现系统功能不正常时,不能确定引起故障的组件,这种情况下采用排除比较法容易确认故障所在。方法是逐一插人组件,同时监视整机或系统,如果系统正常工作,就可排除该组件的嫌疑,再插人另一块组件试验,直到找出故障。
上一页 [1] [2] [3] 下一页
本文关键字:电子 检测 线路板 电工基础,电工技术 - 电工基础