您当前的位置:五五电子网电子知识电工技术电工基础电流互感器知识简介 正文
电流互感器知识简介

电流互感器知识简介

点击数:7206 次   录入时间:03-04 11:59:12   整理:http://www.55dianzi.com   电工基础
继电保护技术问答提供数据如下:对于110KV以上电压等级的互感器一般取Zct=R ,35KV贯串式或常用馈电线互感器取Zct=3R ,R 为互感器二次绕组直流电阻值。
这样以来我们就可以得出励磁电压E=U-Ie×Zct
从而的求得励磁阻抗   Ze=E/Ie
然而,通过这种计算我们仅仅是将上面的伏安特性试验数据变成了一组励磁阻抗的数值。为了确定在最大短路电流情况下互感器是否满足10%误差要求,还必须确认哪一个励磁阻抗的数值是在最大短路电流情况下的励磁阻抗。因此在进行下一步计算前,必须确定最大短路电流,从而确定伏安特性数据中用那一组数据来计算励磁阻抗。
3.2. 电流倍数m的确定
电流倍数m的确定,根据不同的保护类型有不同的计算方法。下面分别进行一些说明。
3.2.1  纵差保护
           m=Krel*Ikmax/I1n
       式中  Ikmax―― 最大穿越故障短路电流。纵差保护的整定一般是对过区外故障时的最大不平衡电流的。因此,这里取最大穿越故障电流以考量这是互感器的误差是否满足要求。
             Krel―― 考虑非周期分量影响后的可靠系数。采用速饱和变流器的,因为对非周期分量有一定的抑止作用,因此取值较小一般为1.3。不带速饱和变流器的,取较大值,一般为2。
             I1n―― 电流互感器的一次额定电流值
3.2.2  距离保护
               m=Krel*Ik/I1n
            式中  Ik――保护范围一段末端故障时,流过本保护的最大短路电流。这是因为,距离保护一段式躲过末端故障进行整定的,同时,由于各段保护中第一短末端的故障电流一般为最大,因此要用末端最大短路电流来考核互感器误差。
                  Krel―― 可靠系数。保护动作时间小于0.5秒时,考虑到暂态分量可能尚未衰减完毕,因此取较大值1.5;保护动作时间大于0.5秒时,考虑到暂态分量一般均已衰减完毕,其影响已很小,因此取较小值1.3。
3.2.3  母差保护
               m=Krel*Ikmax/I1n
             式中  Ikmax―― 最大穿越故障短路电流。由于母线差动一般也是按躲过区外故障时的最大不平衡电流来整定,因此这里同样用最大穿越故障电流来考核互感器误差。
                   Krel―― 可靠系数取1.3。
3.2.4  限时速断保护
               m=Krel*Iop/I2n*Kcon
             式中  Iop―― 继电器动作电流。因为速断保护反应的是故障电流超过动作电流的情况。因此只需用动作电流加可靠系数来考量即可。至于超过故障电流后互感器器产生的误差,一般并不影响速断保护的动作行为。             
                   Krel―― 可靠系数取1.1
                   I2n―― 电流互感器二次额定电流
                   Kcon―― 电流互感器接线系数。因为要反映的是互感器本身的实际感受,因此要考虑接线系数的影响,所以这里除以接线系数。
3.3. 伏安特性数据的选取
我们知道通过伏安特性试验得到的数据为多个数据组,我们应该选择那组电流电压数据进行计算励磁阻抗呢?我们一般借助下面的等式:
                m=I1/I1n=10Ie/I2n
                I1―― 为3.2中我们计算m值时所用的电流值
                10Ie―― 对应于I1的二次电流,考虑到10%误差的极限要求,所以用10Ie表示。
由于I1n、I1和I2n均已知,通过上式我们就可以在知道对应的保护型式时,计算励磁阻抗所用的励磁电流。
    这样我们就可以选取一组伏安特性数据(U-Ie)利用3.1的公式计算出相应的励磁阻抗了。
    当然,如果计算出的Ie值在试验数据中没有,则还要采用插值法近似求得。
3.4. 互感器实际二次负担的测量
互感器的实际二次负担就是每只互感器实际承载的交流阻抗。可用下式表示:
      电流互感器实际负担=单相互感器绕组两端电压 / 测试电流互感器绕组内流过的电流
    测试应该在电流互感器输出端测量(实际工作中多在端子箱出进行,这样会产生误差,没有计及端子箱到互感器输出端子出电缆)。应当注意,当作差动保护回路阻抗测试时应将差动线圈短接。这是因为,我们上面说过差动保护的整定一般均以躲过外部故障产生的不平衡电流,而此时理论上是不产生差动电流的,也就是说差动回路中不流过差动电流,因此差动回路的阻抗也可以忽略。
互感器二次负担测试的示意图如图四所示:
 
图四 互感器二次负担示意图
试验时我们向二次回路分别通入相间电流,测量电压。从而计算出相间阻抗ZAB、ZBC、ZCA。从A相通入单相电流测量电压,得出ZAO。于是我们就可以计算出各相及零相二次负担为:
ZA=ZAB+ZAC-ZBC/2
ZB=ZAB+ZBC-ZCA/2
ZC=ZBC+ZCA-ZAB/2
ZO=ZAO-ZA
二次负担的大小还与故障类型和互感器接线形式有关,因此进行二次负担测量时好要考虑固定接线方式的情况下哪种故障类型时二次负担最大。当然,计算m值时所用的故障电流也要采用同样的故障类型。两者要综合考虑,总的目的是使互感器工作条件最恶劣。
3.5. 分析结论
在3.3中我们计算出了励磁阻抗,那么更加10%误差的要求,就可以求出满足误差要求的最大的二次允许负载。在3.4中我们又测得了互感器的二次实际负载。如果实测负载大于允许最大的二次负载,则互感器误差不符合要求。反之则符合误差要求。
如果10%误差不符合要求一般的做法有:
增大二次电缆界面积(减少二次阻抗)
串接同型同变比电流互感器(减少互感器励磁电流)
改用伏安特性较高的绕组(励磁阻抗增大)
提高电流互感器变比(增大励磁阻抗)
在这里有一点必须明确,上面进行的所有计算均为稳态量的计算。即使计算结果完全符合误差要求,当故障量中暂态量很大时,仍然会产生很大的误差。也就是说对于暂态饱和和暂态误差,上面的计算是无意义的。因为对于暂态分量的形式和大小我们无法把握和预知。对于由于暂态分量造成的误差,一般要采用暂态特性的互感器以及在保护中采取相应的措施以避免对保护动作行为的影响。
最后还有一点需要说明,现在我们经常会遇到伏安特性很高的互感器。我们在进行伏安特性试验时,现有的仪器根本不能将励磁电流升到足够高的水平。下面是一组实际测得的某互感器的伏安特性数据:
I(A) 0.015 0.02 0.025 0.04 0.08
U(V) 700 780 820 970 1230
从上表中我们可以看到,励磁电流还不到0.1A,电压就已经超过1000V。即使互感器二次额定电流为1A,那么我们考虑到短路电流倍数,将励磁电流升到一个足够的值显然是不可能的。这里不可能有两个,一是现有的常用试验仪器的容量不够;二是考虑到二次回路的耐压水平也就是2000KV而已,真的通过其它方式将电压升高,不仅可能造成二次设备的损坏,而且也并不符合实际运行情况。对于这种情况,我们其实并不需要知道某个我们应该计算的励磁电流对应的电压。这是因为在励磁特性曲线中,即使互感器已经饱和,随着励磁电流的增加,励磁电压也是在增加的(只不过趋于平缓而已),至少是不会下降的。因此,以上表为例,我们大可以通过短路电流倍数的计算确定励磁电流值,然后用1230V,甚至是700V作为电压值进行计算。这显然是比常规的算法对互感器的要求更加苛刻了,因此不会造成错误的计算。而计算结果中,我们会发现,即使是采用这种更加苛刻的算法,这种高伏安特性的互感器允许的实际二次负载往往仍远远小于实际负载。另外我们可以换一个角度来看这个问题,其实励磁电压高,实际上就是说明互感器的励磁阻抗值很大(看一下图二 电流互感器伏安特性示意图),那么当然其允许的二次负载也必然很大。
4. 其它相关知识
4.1.  继电保护应采用保护级绕组。故障录波一般应单独采用保护级绕组以防止故障电流大时出现录波失真。条件不允许时可和保护共用一个绕组,但要布置在保护装置后面。表计应采用测量计绕组,一是保证精度,而是在故障时互感器容易饱和以保护表计不损坏。

上一页  [1] [2] [3]  下一页


本文关键字:知识  互感器  电工基础电工技术 - 电工基础