3.1 数据采集
传统的传感器信号数字化大多采用的是VFC、串行A/D、并行A/D 等方案。每一方案都可设计成相应的IP核。虽然已经有人用FPGA完成数据采集,但都是以特定应用的方式,而不是以通用的IP核方式设计的。我们介绍采用MAX125完成的并行A/D接口IP核设计。MAX125 8通道14bit的并行A/D芯片。在FPGA A/D IP核设计中,提供给MAX125信号有启动转换及转换结束后的时序信号,读取转换结果并存储到FPGA 芯片内部RAM中的数据信号。该A/D IP核我们已经开发成功,并获得了很好的使用。
3.2 信号处理
信号处理是智能传感器的主要内容之一。通常包含线性化、滤波、各类补偿、人工神经网络、模糊理论、遗传算法、多传感器融合等工作。在滤波中,除了常规的FFT、DFT之外,近几年还出现了小波变换。由于芯片速度上的优势,如何实现各信号处理IP核通用化设计,已成为相关信号处理算法IP核设计的关键。
如在线性化处理设计中,我们把各类传感器的线性化算法都设计到一个通用的线性化IP核中。在任务调用时再根据不同类型传感器线性化算法要求,组态选择出相应的算法IP核,供实际需要使用。
3.3 数据通信
设置数据通信接口主要是考虑芯片还可以同外部CPU或网络构成更加复杂的测控系统。为了方便芯片的设计,节省芯片资源,我们选用基于ARM7的philIPs LPC2106 芯片进行通信IP核设计。它可以将一系列不同的通信接口(如: CAN、以太网、TCP/IP、RS232/485、I2C、SPI) 以及不同的通信规程用一个通用的微处理器实现。通过与上位机与各类网络的联接,实现远程遥测、网络远程智能测量节点等功能。通信IP核设计主要任务是通信规约算法设计。而大多数接口因为基于ARM7的微处理器都能提供,所以就不需要做太多的工作。
3.4 人机界面与任务调度
人机界面与任务调度IP核也用ARM7微处理器设计。人机界面主要设计键盘接口及LCD/LED/CRT等显示接口。利用ARM7强大的GPIO功能是不难加以实现的。
任务调度IP主要包括数据采集调度、信号处理调度、数据通信调度及人机界面调度等工作。我们采用以源码公开的嵌入式操作 系统μC/OS-Ⅱ2.52版为基础,将它移植到LPC2106 ARM微处理器中。在μC/OS-Ⅱ嵌入式操作系统基础上开发各种应用软件,完成智能传感器所需要的各类任务调度与组态工作。
4 、应用举例
有了基本的IP内核,我们就可以根据需要通过对IP核的组态(在嵌入式操作系统μC/OS-Ⅱ的调度下)构成各类所需的智能传感器系统。图1 所示是用于热电偶温度测温的智能传感器的SOC设计实例。所有算法IP模块都加载到ALTERA公司的APEX20K的多芯片FPGA 上,完成温度信号采集、A/D变换、低端补偿、线性化、程控放大等功能。芯片的总体外部引脚包括A/D接口的数据线和控制线、微处理器接口的数据线和控制线、程控放大的控制线等。微处理器选用具有ARM IP核的Philips公司的LPC2106芯片。它完成通信功能、实时时钟功能、人机接口功能及任务调度功能。通信IP包括I2C总线、RS232/RS485总线、CAN总线、TCP/IP协议、以态网等。
上一篇:振动传感器种类与及原理