3. 蛇形线
蛇形线是Layout中经常使用的一类走线方式。其主要目的就是为了调节延时,满足系统时序设计要求。设计者首先要有这样的认识:蛇形线会破坏信号质量,改变传输延时,布线时要尽量避免使用。但实际设计中,为了保证信号有足够的保持时间,或者减小同组信号之间的时间偏移,往往不 得不故意进行绕线。
二、PCB阻抗控制
随着 PCB 信号切换速度不断增长,当今的 PCB 设计厂商需要理解和控制 PCB 迹线的阻抗。相应于现代数字电路较短的信号传输时间和较高的时钟速率,PCB 迹线不再是简单的连接,而是传输线。
在实际情况中,需要在数字边际速度高于1ns或模拟频率超过300Mhz时控制迹线阻抗。PCB 迹线的关键参数之一是其特性阻抗(即波沿信号传输线路传送时电压与电流的比值)。印制电路板上导线的特性阻抗是电路板设计的一个重要指标,特别是在高频电路的PCB设计中,必须考虑导线的特性阻抗和器件或信号所要求的特性阻抗是否一致,是否匹配。这就涉及到两个概念:阻抗控制与阻抗匹配,本文重点讨论阻抗控制和叠层设计的问题。
阻抗控制
阻抗控制(eImpedance Controling),线路板中的导体中会有各种信号的传递,为提高其传输速率而必须提高其频率,线路本身若因蚀刻,叠层厚度,导线宽度等不同因素,将会造成阻抗值得变化,使其信号失真。故在高速线路板上的导体,其阻抗值应控制在某一范围之内,称为“阻抗控制”。
PCB 迹线的阻抗将由其感应和电容性电感、电阻和电导系数确定。影响PCB走线的阻抗的因素主要有: 铜线的宽度、铜线的厚度、介质的介电常数、介质的厚度、焊盘的厚度、地线的路径、走线周边的走线等。PCB 阻抗的范围是 25 至120 欧姆。
在实际情况下,PCB 传输线路通常由一个导线迹线、一个或多个参考层和绝缘材质组成。迹线和板层构成了控制阻抗。PCB 将常常采用多层结构,并且控制阻抗也可以采用各种方式来构建。但是,无论使用什么方式,阻抗值都将由其物理结构和绝缘材料的电子特性决定:
· 信号迹线的宽度和厚度
· 迹线两侧的内核或预填材质的高度
· 迹线和板层的配置
· 内核和预填材质的绝缘常数
PCB传输线主要有两种形式:微带线(Microstrip)与带状线(Stripline)。
本文关键字:暂无联系方式电工技术,电工技术 - 电工技术
上一篇:移动电源内部构造大解析