您当前的位置:五五电子网电子知识电子学习布线-制版技术PCB电源供电系统的分析与设计 正文
PCB电源供电系统的分析与设计

PCB电源供电系统的分析与设计

点击数:7190 次   录入时间:03-04 11:35:11   整理:http://www.55dianzi.com   布线-制版技术

例子c的红线,在板上放置了一些去耦电容后,那个200MHz的谐振峰被移到了很低的频率处(<20MHz),并且谐振峰的峰值也降低了很多。第一个较强的谐振峰则出现在大约1GHz处。由此可见,通过在PCB上放置分立的去耦电容,电源供电系统在主要的工作频率范围内可以实现较低的并且是平滑的交流阻抗响应。因此,电源供电系统的噪声也会很低。

按此在新窗口浏览图片
图5:针对不同结构仿真计算得到的输入阻抗。不考虑芯片和封装结构(红线);考虑封装结构(蓝线);考虑芯片、封装和电路板(绿线)。

在板上放置分立的去耦电容使得设计师可以灵活地调整电源供电系统的阻抗,实现较低的电源地噪声。然而,如何选择放置位置、选用多少以及选用什么样的去耦电容仍旧是一系列的设计问题。因此,对一个特定的设计寻求最佳的去耦解决方案,并使用合适的设计软件以及进行大量的电源供电系统的仿真模拟往往是必须的。

协同设计概念

图4实际上还揭示了另一个非常重要的事实,即PCB上放置分立的去耦电容的作用频率范围仅仅能达到几百兆赫兹。频率再高,每个分立去耦电容的寄生电感以及板层和过孔的环路电感(电容至芯片)将会极大地降低去耦效果,仅仅通过PCB上放置分立的去耦电容是无法进一步降低电源供电系统的输入阻抗的。从几百兆赫兹到更高的频率范围,封装结构的电源供电系统的板间电容,以及封装结构上放置的分立去耦电容将会开始起作用。到了GHz频率范围,芯片内电源栅格之间的电容以及芯片内的去耦电容是唯一的去耦解决方案。

图5显示了一个例子,红线是一个PCB上放置一些分立的去耦电容后得到的输入阻抗。第一个谐振峰出现在600MHz到700MHz。在考虑了封装结构后,附加的封装结构的电感将谐振峰移到了大约450MHz处,见蓝线。在包括了芯片电源供电系统后,芯片内的去耦电容将那些高频的谐振峰都去掉了,但同时却引入了一个很弱的30MHz谐振峰,见绿线。这个30MHz的谐振在时域中会体现为高频翻转信号的中频包络上的一个电压波谷。

芯片内的去耦是很有效的,但代价却是要用去芯片内宝贵的空间和消耗更多的漏电流。将芯片内的去耦电容挪到封装结构上也许是一个很好的折衷方案,但要求设计师拥有从芯片、封装结构到PCB的整个系统的知识。但通常,PCB的设计师无法获得芯片和封装结构的设计数据以及相应的仿真软件包。对于集成电路设计师,他们通常不关心下端的封装和电路板的设计。但显然采用协同设计概念对整个系统、芯片-封装-电路板的电源供电系统进行优化分析设计是将来发展的趋势。一些走在电子设计前沿的公司事实上已经这样做了。



上一页  [1] [2] 


本文关键字:电源  布线-制版技术电子学习 - 布线-制版技术